Lecture 10

CSE 331
Sep 21, 2016

Mini Project choice due Sep 26

Mini project needs groups of size EXACTLY 3
A gentie reminder that your group composition is due in just over a weok (11.60 pm on Monday, Sep 26).
The importand fing to nofe is that you need to sond me groups of size EXACTLY three. This means you ave responelible for finding bwo other studects in 331 to form your group. I will not makie ary group assignments.

Feel free to use the comments on this post to try and find others who are still locking to form a group.

Up Next....

Graphs

Representation of relatior Edge airs of entities/elements

Graphs are omnipresent

 jetBlue3 12.4.4.12159

Airline Route maps

What does this graph represent?

And this one?

Math articles on Wikipedia

ChrisHarrison.net

And this one?

Rest of today's agenda

Basic Graph definitions

Paths

Connectivity

u and w are connected iff there is a path between them

A graph is connected iff all pairs of vertices are connected

Connected Graphs

Every pair of vertices has a path between them

Cycles

Sequence of k vertices connected by edges, first $k-1$ are distinct

Formally define everything

Rest of Today's agenda

Formal definitions of graphs, paths, cycles, connectivity and trees

Prove n vertex tree has n -1 edges

Algorithms for checking connectivity

Tree

Connected undirected graph with no cycles

Rooted Tree

A rooted tree

Pick any vertex as root

Let the rest of the tree hang under "gravity"

Rest of Today's agenda

Prove n vertex tree has n -1 edges

Algorithms for checking connectivity

Checking by inspection

What about large graphs?

Are s and t connected?

Brute-force algorithm?

List all possible vertex sequences between s and t

Algorithm motivation

