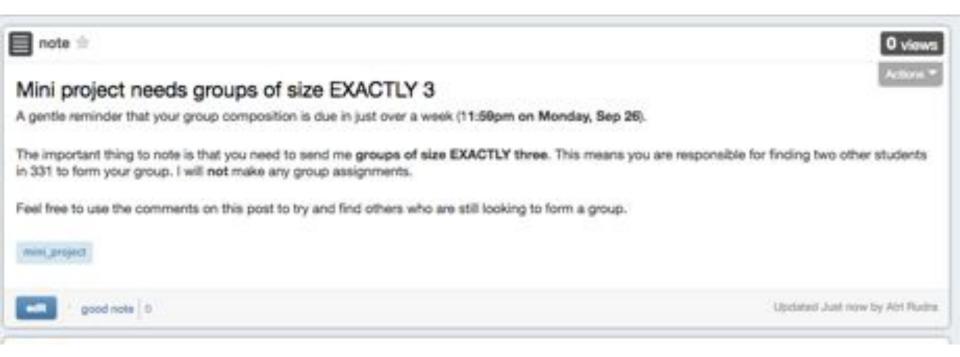
Lecture 12

CSE 331 Sep 26, 2016

Mini Project group due TODAY!



Connectivity Problem

Input: Graph G = (V,E) and s in V

Output: All t connected to s in G

Breadth First Search (BFS)

Build layers of vertices connected to s

$$L_0 = \{s\}$$

Assume L₀,...,L_i have been constructed

 $\mathsf{L}_{\mathsf{j+1}}$ set of vertices not chosen yet but are connected to L_{j}

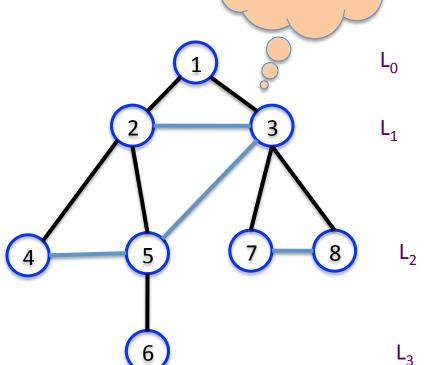
Stop when new layer is empty

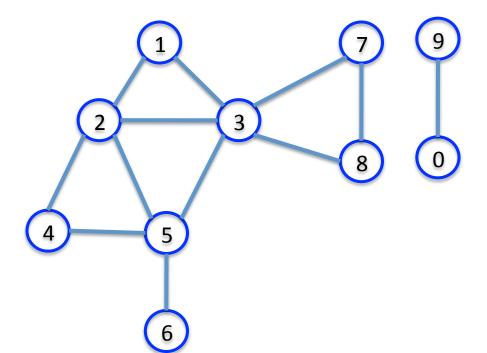
BFS Tree

BFS naturally defines a tree rooted at s

L_j forms the jth "level" in the tree

u in L_{i+1} is child of v in L_i from which it was "discovered"



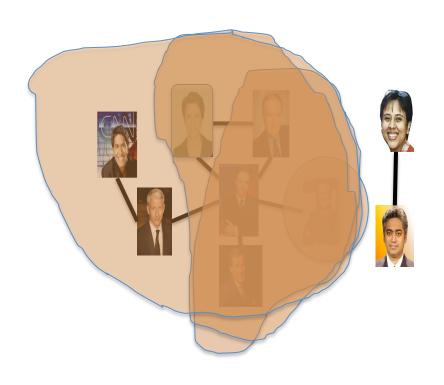


Today's agenda

Every edge in is between consecutive layers

Computing Connected component

Computing Connected Component



Explore(s)

Start with $R = \{s\}$

While exists (u,v) edge v not in R and u in R

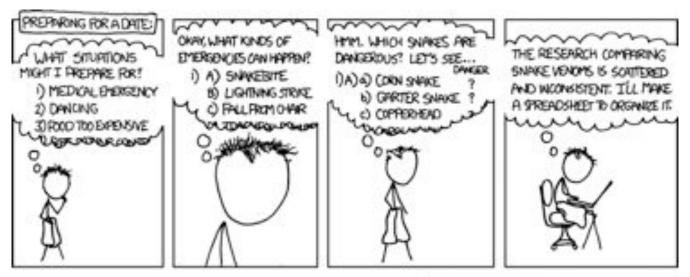
Add v to R

Output $R^* = R$

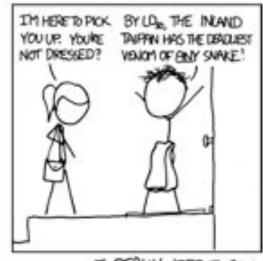
Questions?

BFS

Depth First Search (DFS)



http://xkcd.com/761/



I REPULY NEED TO STOP USING DEPTH-FIRST SEARCHES.

DFS(u)

Mark u as explored and add u to R

For each edge (u,v)

If v is not explored then DFS(v)