Lecture 14

CSE 331
Sep 30, 2016

Peer Notetaker needed

note

Peer- Note taker needed

Hiall,
A student is eligible for the services of a Peer Notetaker. Aocessibility Resources will provide photocopying. A stipend may be paid by Accessibilty Resources to notetaikers who quality at the end of the semester. If you are interested, please send me errail or see me ather class to find out how to volunteer:

Thanks!
Abri
Fpin
incturte

Mini Project Pitch due WED

Mini Project pitch can now be submitted

You can now submit your mini project pitches on Autolab. The deadine is 11:59pm on Wed, Oct S. More details on the mini project page:

Ittpolhoww-student cse buffalo.edu/-atri/cse331/fall16/mini-project/index.html
The case studies will be assigned on a first come frst serve basis. So once your pitch is ready for grading, send me an emal. I plan to grade them on a roling basis.

Important: Since this will be a group submission, things will work a bit difterently than for the curent submissions that are done individually. In partioular, you should form your group before submitting your pich. To create your group do the following:

1. One person in your group has to ornate it trsst. To do this, click on the "Group Options":

Options

Viewwriteup
Dówntoad hañodout
View handin history
Group optlons

Form your group on Autolab BEFORE submitting your pitch

Do not forget to add URL to your references

HW 4 is now posted

Homework 4

Due by 12:30pm, Friday, October 7, 2016.
Make sure you follow all the homework policies.
All submissions should be done via Autolab.

Sample Problem

The Problem
This probiem is fust to pet you finiking about gaphs and get move proctice with prools.
A forest with c components is a graph frat is the union of c disjoint tress. The foure below shows for an example with $c=3$ and $n=13$ with fle three connected componerts coloned blue, read and yedow).

Today' s agenda

Run-time analysis of BFS (DFS)

Stacks and Queues

Last in First out

First in First out

Graph representations

Questions?

2 \# edges = sum of \# neighbors

$$
2 m=\Sigma_{u \text { in } v} n_{u}
$$

Give 2 pennies to each edge
Total \# of pennies $=2 \mathrm{~m}$

Each edges gives one penny to its end points

$$
\# \text { of pennies } u \text { receives }=n_{u}
$$

Breadth First Search (BFS)

Build layers of vertices connected to s
$\mathrm{L}_{0}=\{\mathrm{s}\}$

Assume $\mathrm{L}_{0}, . ., \mathrm{L}_{\mathrm{j}}$ have been constructed
L_{j+1} set of vertices not chosen yet but are connected to L_{j}

Stop when new layer is empty

Rest of Today's agenda

Quick run time analysis for BFS

Quick run time analysis for DFS (and Queue version of BFS)

Helping you schedule your activities for the day

$\mathrm{O}(\mathrm{m}+\mathrm{n}) \mathrm{BFS}$ Implementation

All the layers as one

BFS(s)

$\mathrm{CC}[\mathrm{s}]=\mathrm{T}$ and $\mathrm{CC}[\mathrm{w}]=\mathrm{F}$ for every $\mathrm{w} \neq \mathrm{s}$
Set $\mathrm{i}=0$
Set $\mathrm{L}_{0}=\{\mathrm{s}\}$
While L_{i} is not empty

$$
L_{i+1}=\varnothing
$$

For every u in L_{i}
For every edge (u, w)
If $C C[w]=F$ then

$$
C C[w]=T
$$

Can combine all layers into one queue: all the children of a node are added to the end of the

$$
\text { Add w to } \mathrm{L}_{\mathrm{i}+1}
$$ queue

An illustration

Queue $O(m+n)$ implementation

BFS(s)

Questions?

Implementing DFS in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ time

Same as BFS except stack instead of a queue

A DFS run using an explicit stack

DFS stack implementation

DFS(s)

$\mathrm{CC}[\mathrm{s}]=\mathrm{T}$ and $\mathrm{CC}[\mathrm{w}]=\mathrm{F}$ for every $\mathrm{w} \neq \mathrm{s}$

Intitialize S = \{s $\}$
While \hat{S} is not empty

Pop the top element u in \hat{S}
For every edge (u, w)
If $C C[w]=F$ then
$C C[w]=T$
Push w to the top of \hat{S}

Questions?

Reading Assignment

Sec 3.3, 3.4 and 3.5 of [KT]

Directed graphs

Model asymmetric relationships

Precedence relationships

Directed graphs

Directed Acyclic Graph (DAG)

No directed cycles

Topological Sorting of a DAG

Order the vertices so that all edges go "forward"

