Lecture 19

CSE 331
Oct 12, 2016

Mid-term-I Monday

In class

1:00pm-1:50pm sharp

Eight True/False with justification Qs

Questions?

Analyzing the algorithm

R : set of requests

Set A to be the empty set
While R is not empty

Choose in R with the earliest finish time
Add i to A
Remove all requests that conflict with ifrom R

Return A* $=A$

A* has no conflicts

A* is an
optimal solution

Algorithm implementation

Go through the intervals in order of their finish time

In general, if jth interval is the last one chosen
Pick smallest i>j such that s $[i] \geq f(j)$

The final algo

$O(n \log n)$ time sort intervals such that $f(i) \leq f(i+1)$
$\mathrm{O}(\mathrm{n})$ time build array s[1..n] s.t. $\mathrm{s}[\mathrm{i}]=$ start time for i

Add 1 to A and set $f=f(1)$
For $\mathrm{i}=2$.. n

If $s[i] \geq f$
Add i to A

$$
\text { Set } f=f(i)
$$

Return A* $=A$

Reading Assignment

Sec 4.1of [KT]

Questions?

The "real" end of Semester blues

Write up a term paper

Party!

Exam study
331 HW

The "real" end of Semester blues

Write up a term paper

Exam study

Party!

331 HW
Project

Tuesday
Wednesday
Thursday
Friday

The algorithmic task

YOU decide when to start each task

Write up a term paper

Write up a term paper

Exam study

Party!

331 HW

You have to do
 ALL the tasks

Project

Scheduling to minimize lateness

Write up a term paper

Exam study

Party!
η
331 HW
Project

Monday
Tuesday
Wednesday
Thursday
Friday

One possible schedule

