Lecture 19

CSE 331 Oct 12, 2016

Mid-term-I Monday

In class

1:00pm-1:50pm sharp

Eight True/False with justification Qs

Questions?

Analyzing the algorithm

R: set of requests

Set A to be the empty set

While R is not empty

Choose i in R with the earliest finish time

Add i to A

Remove all requests that conflict with i from R

Return $A^* = A$

A* is an optimal solution

Algorithm implementation

Go through the intervals in order of their finish time

The final algo

O(n log n) time sort intervals such that $f(i) \le f(i+1)$

O(n) time build array s[1..n] s.t. s[i] = start time for i

```
Add 1 to A and set f = f(1)

For i = 2 ... n

If s[i] \ge f

Add i to A

Set f = f(i)

Return A^* = A
```

Reading Assignment

Sec 4.1of [KT]

Questions?

The "real" end of Semester blues

There are deadlines and durations of tasks

The "real" end of Semester blues

There are deadlines and durations of tasks

The algorithmic task

YOU decide when to start each task Write up a term paper Exam study You have to do ALL the tasks Party! 331 HW Project Monday Tuesday Wednesday Thursday Friday

Scheduling to minimize lateness

All the tasks have to be scheduled GOAL: minimize maximum lateness

One possible schedule

All the tasks have to be scheduled GOAL: minimize maximum lateness Lateness = 0 Lateness = 2 Party! 331 HW Exam study Write up a term pa Monday Tuesday Wednesday Thursday Friday