#### Lecture 21

CSE 331 Oct 21, 2016

### Grading

#### Mid-term-1 hopefully by today

Mini project pitch by the weekend

## Scheduling to minimize lateness

n jobs: ith job (t<sub>i</sub>,d<sub>i</sub>)

start time: s

Schedule the n jobs: ith job gets interval [s(i),f(i)=s(i)+t<sub>i</sub>)

Algo picks s(i)

GOAL: Minimize MAXIMUM lateness

Lateness of job i,  $l_i = max(0, f(i)-d_i)$ 

## The Greedy Algorithm

(Assume jobs sorted by deadline:  $d_1 \le d_2 \le \dots \le d_n$ )



## Two definitions for schedules

Idle time Max "gap" between two consecutively scheduled tasks



#### Proof structure

Any two schedules with 0 idle time and 0 inversions have the same max lateness

Greedy schedule has 0 idle time and 0 inversions

There is an optimal schedule with 0 idle time and 0 inversions

# Today's agenda

"Exchange" argument to convert an optimal solution into a 0 inversion one

## **Rest of Today**

# my apartment Buildings 60 seconds n= + (1+52) #3- ±18 ſe When I'm walking, I worry a lot about the efficiency of my path. Building http://xkcd.com/85/

#### Shortest Path Problem

#### **Reading Assignment**

Sec 2.5 of [KT]



### Shortest Path problem



**Output:** All shortest paths from s to all nodes in V

#### Naïve Algorithm

 $\Omega(n!)$  time

# Dijkstra's shortest path algorithm

