Lecture 23

CSE 331
Oct 26, 2016

Graded pitch

28 vawe

Mini Project pitches graded

Sony for the delay. The mini project ptches have now been graded.You can look at your grade and comments on Autolab.

At the end of the post is the grading rubric. Some important points:

* Some of you chose case studies that were already taken, In such a case I have left a note on your pitch asking me to email me alternate case studies (along with their URLs. Please make sure you emall be your alternate cases studied by 5pm on Wed, Oct 26.
- Autolab jast copies submiasion for the group into individual submissions: I left comments in only one indvidual submission, if I left them in yours, please share them with your group members.
- I will be posting more detals on the video by the end of the week. The deadine for submitting videos is astll 11:50pm on Mon, Nov 14. I would recommend that you start thinioing about your video now.

Before the grading rubric, here are the stats (out of a possible 100):

- Mean; 80.8
- Median: 85
- Sted Dev: 16.9
- Maxe 99

Shortest Path Problem

Another more important application

Is BGP a known acronym for you?

Routing uses shortest path algorithm

Shortest Path problem

Input: Directed graph $G=(\mathrm{V}, \mathrm{E})$
Edge lengths, I_{e} for e in E

"start" vertex s in V

Output: All shortest paths from s to all nodes in V

Dijkstra' s shortest path algorithm

Dijkstra' s shortest path algorithm

Input: Directed $G=(\mathrm{V}, \mathrm{E}), \mathrm{I}_{\mathrm{e}} \geq 0$, s in V
$R=\{s\}, d(s)=0$
While there is a x not in R with (u, x) in E, u in R
Pick w that minimizes d' (w)

$$
\begin{aligned}
& \text { Add } w \text { to } R \\
& d(w)=d^{\prime}(w)
\end{aligned}
$$

$$
d^{\prime}(w)=\min _{e=(u, w) \text { in } E, u \text { in } R} d(u)+l_{e}
$$

$d(s)=0$	$d(u)=1$
$d(w)=2$	$d(x)=2$
$d(y)=3$	$d(z)=4$

Shortest paths

Couple of remarks

The Dijkstra's algo does not explicitly compute the shortest paths

Can maintain "shortest path tree" separately

Dijkstra's algorithm does not work with negative weights

Left as an exercise

Rest of Today's agenda

Prove the correctness of Dijkstra's Algorithm

Runtime analysis of Dijkstra's Algorithm

Reading Assignment

Sec 4.4 of [KT]

