
Lecture	26	

CSE	331	
 Nov	2,	2016	



One-on-one	mee8ngs	



Mini	project	video	due	~1.5	weeks	



Chunming’s	address	TODAY	



Cut	Property	Lemma	for	MSTs	

S	 V	\	S	

Cheapest	crossing	edge	is	in	all	MSTs	

Condi8on:	S	and	V\S	are	non-empty	

Assump8on:	All	edge	costs	are	dis8nct	



S	 V	\	S	

Op8mality	of	Kruskal�s	Algorithm	

Input:	G=(V,E),	ce>	0	for	every	e	in	E	

T	=	Ø	

Sort	edges	in	increasing	order	of	their	cost	

Consider	edges	in	sorted	order	

If	an	edge	can	be	added	to	T	without	adding	a	cycle	then	add	it	to	T	

S	
Nodes	

connected	to	red	
in	(V,T)	

S	is	non-empty	

V\S	is	non-empty	

First	crossing	edge	considered	



Is	(V,T)	a	spanning	tree?	

No	cycles	by	design	

Just	need	to	show	that	(V,T)	is	connected	

S�	 V	\	S�	

No	edges	here	

G	is	
disconnected!	



Removing	dis8nct	cost	assump8on	

Change	all	edge	weights	by	very	small	amounts	

Make	sure	that	all	edge	weights	are	dis8nct	

MST	for	�perturbed�	weights	is	the	same	as	for	original	

Changes	have	to	be	small	enough	so	that	this	holds	

EXERCISE:	Figure	out	how	to	change	
costs	



Running	8me	for	Prim�s	algorithm	
Similar	to	Dijkstra�s	algorithm	

Input:	G=(V,E),	ce>	0	for	every	e	in	E	

S	=	{s},	T	=	Ø	

While	S	is	not	the	same	as	V	

Among	edges	e=	(u,w)	with	u	in	S	and	w	not	in	S,	pick	one	with	minimum	cost		

Add	w	to	S,	e	to	T	

O(m	log	n)	



Running	8me	for	Kruskal’s	Algorithm	

Joseph	B.	Kruskal	

Input:	G=(V,E),	ce>	0	for	every	e	in	E	

T	=	Ø	

Sort	edges	in	increasing	order	of	their	cost	

Consider	edges	in	sorted	order	

If	an	edge	can	be	added	to	T	without	adding	a	cycle	then	add	it	to	T	

Can	be	verified	in	O(m+n)	8me	

O(m2)	8me	
overall	

Can	be	implemented	in	O(m	log	n)	8me	(Union-find	DS)	



Reading	Assignment	
Sec	4.5,	4.6	of	[KT]	



High	Level	view	of	the	course	
Problem	Statement	

Algorithm	

Problem	Defini8on	

�Implementa8on�	

Analysis	 Correctness+Run8me	Analysis	

Data	Structures	

Three	general	
techniques	

Done	with	
greedy	



Trivia	



Divide	and	Conquer	

Divide	up	the	problem	into	at	least	two	sub-problems	

Recursively	solve	the	sub-problems	

�Patch	up�	the	solu8ons	to	the	sub-problems	for	the	final	solu8on	



Sor8ng	

Given	n	numbers	order	them	from	smallest	to	largest	

Works	for	any	set	of	elements	on	which	there	is	a	total	order	



Inser8on	Sort	
Input:	a1,	a2,….,	an	 Make	sure	that	all	the	

processed	numbers	
are	sorted	Output:	b1,b2,…,bn	

b1=	a1	
for	i	=2	…	n	

Find	1	≤	j	≤	i	s.t.	ai		lies	between		bj-1	and		bj		

Move	bj	to	bi-1	one	cell	�down�	

bj=ai	 4	

3	

2	

1	

a	 b	

4	2	

3	

4	

3	

4	

1	

2	

3	

4	

O(log	n)	

O(n)	

O(n2)	overall	



Other	O(n2)	sor8ng	algorithms	

Selec8on	Sort:	In	every	round	pick	the	min	among	remaining	numbers	

Bubble	sort:	The	smallest	number	�bubbles�	up	



Divide	and	Conquer	

Divide	up	the	problem	into	at	least	two	sub-problems	

Recursively	solve	the	sub-problems	

�Patch	up�	the	solu8ons	to	the	sub-problems	for	the	final	solu8on	



Mergesort	Algorithm	

Divide	up	the	numbers	in	the	middle	

Sort	each	half	recursively	

Merge	the	two	sorted	halves	into	one	sorted	output	

Unless	n=2	



How	fast	can	sorted	arrays	be	
merged?	

Group	talk	8me	



Mergesort	algorithm	
Input:	a1,	a2,	…,	an	 Output:	Numbers	in	sorted	order	

MergeSort(	a,	n	)	

If	n	=	2	return	the	order	min(a1,a2);	max(a1,a2)	

aL	=	a1,…,	an/2	

aR	=	an/2+1,…,	an	

return	MERGE	(	MergeSort(aL,	n/2),	MergeSort(aR,	n/2)	)	

If	n	=	1	return	the	order	a1	



An	example	run	

MergeSort(	a,	n	)	

If	n	=	2	return	the	order	min(a1,a2);	max(a1,a2)	
aL	=	a1,…,	an/2	

aR	=	an/2+1,…,	an	

return	MERGE	(	MergeSort(aL,	n/2),	MergeSort(aR,	n/2)	)	

1	51	 100	 19	 2	 8	 3	4	

51	1	 19	 100	

1	 19	 51	 100	

2	 8	 4	3	

2	 3	 4	 8	

1	 2	 3	 4	 8	 19	 51	 100	

If	n	=	1	return	the	order	a1	



Correctness	
Input:	a1,	a2,	…,	an	 Output:	Numbers	in	sorted	order	

MergeSort(	a,	n	)	

If	n	=	2	return	the	order	min(a1,a2);	max(a1,a2)	

aL	=	a1,…,	an/2	

aR	=	an/2+1,…,	an	

return	MERGE	(	MergeSort(aL,	n/2),	MergeSort(aR,	n/2)	)	

By	
induc8on	

on	n	

Induc8ve	step	follows	from	correctness	of	MERGE	

If	n	=	1	return	the	order	a1	


