Lecture 26

CSE 331
Nov 2, 2016

One-on-one meetings

Meetings to discuss CSE 331 performance

I will be emali those who have a D or below in their mid-term grade for more detals on the grade see 0575). Of course you can also come and talk about your 331 performance even if you have a temp grade Figher than D.

I have locked out certain times this week for 10 mins meetings. Please note that these are NOT walk-ins: it no one signs up for a slot, I might not be in my office then. If you want to come and talk with me, plesse emal me with ALL the slots below that work for you. Slots will be assigned on a first-come-first-serve basis.

Below are all the avalable slots (below the start times are listed: a slot that is already taken has a strike-throught

* Monday (Oct 31): $11 \mathrm{am}, 11: 10 \mathrm{am}, 1120 \mathrm{am}, ~ 54: 30 \mathrm{am}, 11340 \mathrm{am}, 11: 50 \mathrm{am}$, noor, 12:10pm, 2:00pm, 2:10pm, 5:00pm
* Tuesday (Nov 1): 3:00pm, 3:10pm
-Wednesday (Nov 2): 11am, 11:10am, 11:20am, 11:30am, 11:40am, 11:50am, noon, 12:10pm
* Thursday (Nov 3: 1:30pm, 1:40pm, 1:50pm, 2pm, 2:10pm, 2:20pm, 2:30pm, 2:40pm, 2:50pm, 3:00pm, 3:10pm, 3:20pm, 3:30pm, $3: 40 \mathrm{pm}, 3: 50 \mathrm{pm}, 4: 00 \mathrm{pm}, 4: 40 \mathrm{pmm}, 4: 20 \mathrm{pm}, 4: 30 \mathrm{pm}, 4: 40 \mathrm{pm}, 4: 60 \mathrm{pm}, 5: 00 \mathrm{pm}$
* Friday (Nov 4): 10am, 10:10am, 10:20am, 10:30am, 10:40am, 10:50am

Spin
mid-term sualing

Mini project video due ~1.5 weeks

90 veows
REm:

Mini project video

Sorry for the delay in posting this irlormation. For the basics, plesse see the miri-project page.
Below are the main logistics. IT IS IMPORTANT TO READ THESE CAREFULLY SINCE NOT FOLLOWING INSTRUCTION COULD LEAD TO LOSS OF ALL POINTS.

* The desdine is Monday, November 14, 11:59pm. You can start submiting on Austolab arytime from now till the deadine.
* You will need to need to form your group on Autolab again for this submission. See e304 for instructions on how to do it.
- Very important: Please make sure you submit your group's submission after the group has been formed. If this is not done. the entire group will get a zero.
- No excuses on this-- make sure you do this group formation well in advance. If you cannot reach one of your group members at the last morsent, then that is your problem.
- You will need to submit a PDF with the following information:
- Linik to the your group's video on Youtube
- The video has to be for AT MOST FIVE (5) MINS. While grading anything beyond the 5 min mark will be completely ignored. Of course a shorter video is fine!
- If you would prefer your groups video to be not listed on this page, please add in an explict sentence saying so. By default, all videos will be linked to on the above page.
- If you submit in a format other than PDF then your group wil get a zero. Also make sure to preview the submithed PDF to douple-chnck that Autolab can actually rend your submitted file.
- The grading rubric is simiar to the pitch but there are some small differences:

Chunming's address TODAY

Chunming's 2nd annual chair's address

Churming will be giving his second annual chair's address to CSE majors on Wednesday, Nov 2 at Spm in Davis 101.
The idea behind these addresses is to incresse the interaction between the departrsent and the undergraduate students. We are changing the format slightly this year. Instead of addressing different years separately this address is for all years together. Also this meeting wit be more in a fown hall setting, so please add in your questions in the form below!

Also ThERE WILL BE FREE PIZZA.
To help us plan better for plzza and to submit your question, please fill in this Google form:

I know this is bit of a short notice but I hope you can make it!
spin
logitica

Cut Property Lemma for MSTs

Condition: S and $V \backslash S$ are non-empty

Cheapest crossing edge is in all MSTs

Assumption: All edge costs are distinct

Optimality of Kruskal' s Algorithm

Input: $G=(V, E), c_{e}>0$ for every e in E
$\mathrm{T}=\varnothing$
Sort edges increasing order of their cost
S is non-empty
$\mathrm{V} \backslash \mathrm{S}$ is non-empty
First crossing edge considered

Consider edges in sorted order
If an edge can be added to without adding a cycle then add it to T

Is (V, T) a spanning tree?

No cycles by design

Just need to show that (V, T) is connected

Removing distinct cost assumption

Change all edge weights by very small amounts

Make sure that all edge weights are distinct

MST for "perturbed" weights is the same as for original

Changes have to be small enough so that this holds

Running time for Prim's algorithm

Similar to Dijkstra's algorithm

Input: $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{c}_{\mathrm{e}}>0$ for every e in E
$S=\{s\}, T=\varnothing$

While S is not the same as V

Among edges $e=(u, w)$ with u in S and w not in S, pick one with minimum cost
Add w to S , e to T

Running time for Kruskal's Algorithm

Can be implemented in $O(m \log n)$ time (Union-find DS)

Input: $G=(V, E), c_{e}>0$ for every e in E
$T=\varnothing$

Sort edges in increasing order of their cost

Joseph B. Kruskal
Consider edges in sorted order

$\mathrm{O}\left(\mathrm{m}^{2}\right)$ time

 overallIf an edge can be added to T without adding a cycle then add it to T

Reading Assignment

Sec 4.5, 4.6 of [KT]

High Level view of the course

Data Structures

Correctness+Runtime Analysis

Trivia

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems
"Patch up" the solutions to the sub-problems for the final solution

Sorting

Given n numbers order them from smallest to largest

Works for any set of elements on which there is a total order

Insertion Sort

Input: $a_{1}, a_{2}, \ldots, a_{n}$
Output: $\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{n}}$
$O\left(n^{2}\right)$ overall
$\mathrm{b}_{1}=\mathrm{a}_{1}$
for $\mathrm{i}=2 \ldots \mathrm{n}$
Find $1 \leq j \leq i$ s.t. a_{i} lies between b_{j-1} and b_{j} Move b_{j} to b_{i-1} one cell "down"

a	b
4	3
3	3
2	4
1	4

Other $\mathrm{O}\left(\mathrm{n}^{2}\right)$ sorting algorithms

Selection Sort: In every round pick the min among remaining numbers

Bubble sort: The smallest number "bubbles" up

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems
"Patch up" the solutions to the sub-problems for the final solution

Mergesort Algorithm

Divide up the numbers in the middle

Sort each half recursively

Unless $\mathrm{n}=2$

Merge the two sorted halves into one sorted output

How fast can sorted arrays be merged?

Group talk time

Mergesort algorithm

Input: $a_{1}, a_{2}, \ldots, a_{n}$
Output: Numbers in sorted order

```
MergeSort( a, n )
    If n=1 return the order a
    If n=2 return the order min (a, (a, m); max (a
    aL}=\mp@subsup{a}{1,\ldots,}{},\mp@subsup{a}{n/2}{
ar}=\mp@subsup{a}{n/2+1}{},\ldots,\mp@subsup{a}{n}{
return MERGE (MergeSort(a, n/2),MergeSort(a, m/2) )
```


An example run

MergeSort(a, n)
If $\mathrm{n}=1$ return the order a_{1}
If $\mathrm{n}=2$ return the order $\min \left(\mathrm{a}_{1}, \mathrm{a}_{2}\right) ; \max \left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)$
$a_{L}=a_{1}, \ldots, a_{n / 2}$
$a_{R}=a_{n / 2+1}, \ldots, a_{n}$
return MERGE (MergeSort($\left.a_{L}, n / 2\right)$, MergeSort $\left(a_{R}, n / 2\right)$)

Correctness

Input: $a_{1}, a_{2}, \ldots, a_{n}$
Output: Numbers in sorted order

```
MergeSort(a, n )
    If }n=1\mathrm{ return the order }\mp@subsup{a}{1}{
    If }\textrm{n}=2\mathrm{ return the order min}(\mp@subsup{\textrm{a}}{1}{},\mp@subsup{a}{2}{}); max(a (a, ,a
aL}=\mp@subsup{a}{1,\ldots,}{},\mp@subsup{a}{n/2}{
ar}=\mp@subsup{a}{n/2+1,\ldots,}{},\mp@subsup{a}{n}{
return MERGE 'MergeSort(a, n/2) MergeSort(a
```

Inductive step follows from correctness of MERGE

