Lecture 28

CSE 331
Nov 7, 2016

Mini project video due next Mon

Mini project video

Sorry for the delay in posting this information. For the basics, please see the mini-project page.

Below are the main iogistics. IT IS IMPORTANT TO READ TRESE CAREFULLY SINCE NOT FOLLOWING INSTRUCTION COULD LEAD TO LOSS OF ALL POINTS.

- The deadine is Monday, November 14, 11:59pm. You can start submitting on Autolab anytime from now till the deadine.
- You will need to need to form your group on Autolab again for this submission. See 9304 for instructions on how to do it.
* Very important Please make sure you submit your group's submission after the group has been formed. If this is not done. the entire group will get a zero.
* No excuses on this- make sure you do this group formation well in advance. If you cannot reach one of your group members at the last moment, then that is your problem.
- You will need to submif a PDF with the following information:
- Link to the your group's videc on Youtube
- The video has to be for AT MOST FIVE (5) MINS. While grading anything beyond the 5 min mark will be completely ignored. Of course a shorter video is finel
* If you would preber your groups video to be net listed on this page, please add in an explicit sentence siying so. By default, all videos will be liviked to on the above page.
* It you submit in a format other than PDF then your group will get a zero. Also make sure to preview the submitted PDF to double-check that Autolab can actually read your submitted fie.

Anonymous feedback

Anonymous CSE 331 feedback

Hiall,
Sorry for delay in getting this out. Please fll in this form to give feedback:

Few remarks:

* Filing in the form is optional and completely anonymous.
* I would however, encourage you to fill in at least part of the feedback form, rlil try my best to incorporate your feecback as best as we can.
* The form is on the longer side but there are no required questions: so feel free to answer as little (or as much1) as you feel like.

Thanks for responses so far!

Overall your feeling about CSE 331 [24mponmen

Detailed response at the end of the week

Allowed Sources

Allowed source for Prim's algorithm

Since one of you asked, the Wikipedia page on Prim's algorithm is now an allowed source. The page with online sources has also been upated:
http:/hww-student/cse.buffaic.edu/-atri/cses31/Hallib/policies/aliowed-sources.htrtl

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems
"Patch up" the solutions to the sub-problems for the final solution

Improvements on a smaller scale

Greedy algorithms: exponential \rightarrow poly time
(Typical) Divide and Conquer: $\mathrm{O}\left(\mathrm{n}^{2}\right) \rightarrow$ asymptotically smaller running time

Multiplying two numbers

Given two numbers a and b in binary

$$
a=\left(a_{n-1}, ., a_{0}\right) \text { and } b=\left(b_{n-1}, \ldots, b_{0}\right)
$$

Compute $\mathrm{c}=\mathrm{a} \times \mathrm{b}$

Elementary
 school algorithm is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

The current algorithm scheme

$$
\begin{aligned}
& T(n) \leq 4 T(n / 2)+c n \\
& T(1) \leq c
\end{aligned}
$$

$$
T(n) \text { is } O\left(n^{2}\right)
$$

The key identity

$$
a^{1} b^{0}+a^{0} b^{1}=\left(a^{1}+a^{0}\right)\left(b^{1}+b^{0}\right)-a^{1} b^{1}-a^{0} b^{0}
$$

The final algorithm

Input: $\mathrm{a}=\left(\mathrm{a}_{\mathrm{n}-1}, \ldots, \mathrm{a}_{0}\right)$ and $\mathrm{b}=\left(\mathrm{b}_{\mathrm{n}-1}, \ldots, \mathrm{~b}_{0}\right)$

Mult (a, b)

$$
\begin{aligned}
& \text { If } n=1 \text { return } a_{0} b_{0} \\
& a^{1}=a_{n-1}, \ldots, a_{[n / 2]} \text { and } a^{0}=a_{[n / 2]-1}, \ldots, a_{0} \\
& \text { Compute } b^{1} \text { and } b^{0} \text { from } b \\
& x=a^{1}+a^{0} \text { and } y=b^{1}+b^{0} \\
& \text { Let } p=\text { Mult }(x, y), D=\operatorname{Mult}\left(a^{1}, b^{1}\right), E=\operatorname{Mult}\left(a^{0}, b^{0}\right) \\
& F=p-D-E \\
& \text { return } D \cdot 2^{2[n / 2]}+F \bullet 2^{[n / 2]}+E
\end{aligned}
$$

$$
T(1) \leq c
$$

$$
T(n) \leq 3 T(n / 2)+c n
$$

$$
O\left(n^{\log 3}\right)=O\left(n^{1.59}\right)
$$

run time

 are $O(n)$ time$a \cdot b=a^{1} b^{1} \cdot 2^{2[n / 2]}+\left(\left(a^{1}+a^{0}\right)\left(b^{1}+b^{0}\right)-a^{1} b^{1}-a^{0} b^{0}\right) \cdot 2^{[n / 2]}+a^{0} b^{0}$

