Lecture 30

CSE 331
Nov 11, 2016

Mini project video due Mon

Mini project video

Sorry for the delay in posting this information. For the basics, please see the mini-project page.

Below are the main iogistics. IT IS IMPORTANT TO READ TRESE CAREFULLY SINCE NOT FOLLOWING INSTRUCTION COULD LEAD TO LOSS OF ALL POINTS.

- The deadine is Monday, November 14, 11:59pm. You can start submitting on Autolab anytime from now till the deadine.
- You will need to need to form your group on Autolab again for this submission. See 9304 for instructions on how to do it.
* Very important Please make sure you submit your group's submission after the group has been formed. If this is not done. the entire group will get a zero.
* No excuses on this- make sure you do this group formation well in advance. If you cannot reach one of your group members at the last moment, then that is your problem.
- You will need to submif a PDF with the following information:
- Link to the your group's videc on Youtube
- The video has to be for AT MOST FIVE (5) MINs. While grading anything beyond the 5 min mark will be completely ignored. Of course a shorter video is finel
* If you would preber your groups video to be net listed on this page, please add in an explicit seentence saying so. By default, all videos will be liniked to on the above page.
* It you submit in a format other than PDF then your group will get a zero. Also make sure to preview the submitted PDF to double-check that Autolab can actually read your submitted fie.

Homework 8

Homework 8

Due by 12:30pm, Friday, November 18, 2016
Make sure you follow all the homework poicies.
Al submissions should be done via Autolab.

Question 1 (Programming Assignment) [40 points]

[^0]The Problem
in this problem, we al explore minimum spanving trees.

Solutions to Homework 7

At the END of the lecture

Counting Inversions

Input: n distinct numbers $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}$

Inversion: (i,j) with $\mathrm{i}<\mathrm{j}$ s.t. $\mathrm{a}_{\mathrm{i}}>\mathrm{a}_{\mathrm{j}}$

Output: Number of inversions

Divide and Conquer

Divide up the problem into at least two sub-problems

Solve all sub-problems: Mergesort
Recursively solve the sub-problems
Solve some sub-problems: Multiplication
Solve stronger sub-problems: Inversions
"Patch up" the solutions to the sub-problems for the final solution

Handling crossing inversions

Sort a_{L} and a_{R} recursively!

Mergesort-Count algorithm

Input: $a_{1}, a_{2}, \ldots, a_{n}$
Output: Numbers in sorted order+ \#inversion

```
MergeSortCount( a, n )
    If n=1 return (0, a )
    If }\textrm{n}=2\mathrm{ return (a1>a2, min(a
    a
    (c
    (cr, a
    (c, a) = MERGE-COUNT(a, , a
    return (c+c, +c cr,a)
```


Closest pairs of points

Input: n 2-D points $P=\left\{p_{1}, \ldots, p_{n}\right\} ; p_{i}=\left(x_{i}, y_{i}\right)$

$$
d\left(p_{i}, p_{j}\right)=\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)^{1 / 2}
$$

Output: Points p and q that are closest

Group Talk time

$\mathrm{O}\left(\mathrm{n}^{2}\right)$ time algorithm?

1-D problem in time $O(n \log n)$?

Sorting to rescue in 2-D?

Pick pairs of points closest in x co-ordinate

Pick pairs of points closest in y co-ordinate

Choose the better of the two

A property of Euclidean distance

$$
d\left(p_{i}, p_{j}\right)=\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)^{1 / 2}
$$

The distance is larger than the \mathbf{x} or \mathbf{y}-coord difference

Rest of Today's agenda

Divide and Conquer based algorithm

Dividing up P

First $\mathrm{n} / 2$ points according to the x -coord

Recursively find closest pairs

An aside: maintain sorted lists

P_{x} and P_{y} are P sorted by x-coord and y-coord
$Q_{x}, Q_{y}, R_{x}, R_{y}$ can be computed from P_{x} and P_{y} in $O(n)$ time

An easy case

Life is not so easy though

$\delta=\min$ (blue, green)

Rest of Today's agenda

Divide and Conquer based algorithm

Euclid to the rescue (?)

$$
d\left(p_{i}, p_{j}\right)=\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)^{1 / 2}
$$

The distance is larger than the \mathbf{x} or \mathbf{y}-coord difference

Life is not so easy though

$\delta=\min$ (blue, green)

All we have to do now

$\delta=\min$ (blue, green)

The algorithm so far...

Input: n 2-D points $P=\left\{p_{1}, \ldots, p_{n}\right\} ; p_{i}=\left(x_{i}, y_{i}\right)$

$$
O(n \log n)+T(n)
$$

Sort P to get P_{x} and P_{y}
Closest-Pair (P_{x}, P_{y})

$$
\begin{array}{ll}
O(n \log n) & T(<4)=c \\
T(n)=2 T(n / 2)+c n
\end{array}
$$

If $\mathrm{n}<4$ then find closest point by brute-force
Q is first half of P_{x} and R is the rest \qquad $\mathrm{O}(\mathrm{n})$
Compute $\mathrm{Q}_{x}, \mathrm{Q}_{y}, \mathrm{R}_{x}$ and R_{y}
O(n)
$O(n \log n)$ overall
$\left(\mathrm{q}_{0}, \mathrm{q}_{1}\right)=$ Closest-Pair $\left(\mathrm{Q}_{x}, \mathrm{Q}_{\mathrm{y}}\right)$
$\left(r_{0}, r_{1}\right)=$ Closest-Pair $\left(R_{x}, R_{y}\right)$
$\delta=\min \left(d\left(q_{0}, q_{1}\right), d\left(r_{0}, r_{1}\right)\right)$
$S=$ points (x, y) in P s.t. $\left|x-x^{*}\right|<\delta$
return Closest-in-box $\left(S,\left(q_{0}, q_{1}\right),\left(r_{0}, r_{1}\right)\right)$

[^0]: (b) Note
 dscumentation and fles for the larguage of your choowing.

