Lecture 33

CSE 331
Nov 18, 2016

Mini project video grading

=P
z/:E *E“E-I
Mini project video grading |

| apologize in acvance for the fact that the grading of the mini-project will be a bit defayed. In particular, the 1op 10 videcs who will get
a chance 10 Make a presentation for (potentially Donus points) might only get a few days of notce

Mmar O

Homework 9
Homework 9

Make sure you folow all the homework posces

Al SUbMISSONS Should be oonNe via Autoad

Question 1 (Programming Assignment) [40 points]

Note
This assigrment can be soived In other Java, Pymnon or Cee [you showdd pick The BNguage you am most comionabie wih), Pioase make s 1o loox &t the supporting

SOCUMSNEANON ANd Thes 1oy the Ngusge of your CROOANG.

! Note on Timeouts
For this problem the total timeout for Autolab is 480s, which is higher the the usual timeouts of 180s or 240s in the earlier homeworks. So if your code takes a

long time to run it'll take longer for you to get feedback on Autolab. Please start early to avoid getting deadlocked out before the feedback deadline.

Also for this problem, C++ and Java are way faster. The 480s timeout was chosen to accommodate the fact that Python is much slower than these two languages.

HW 8 solutions

End of the lecture

Graded HW 6

Done by today

Apologies for the delay!

CS Ed week (Dec 5)

Celebrale
CSEDWEEK :

wuth the |

Children K-12 are inviled to:

KID'S DAY

Monday, Dec. 5 | Davis Hall. UB

Weighted Interval Scheduling

Input: n jobs (s, f,v)

Output: A schedule S s.t. no two jobs in S have a conflict

Goal: max 2, sV,

Assume: jobs are sorted by their finish time

Couple more definitions

p(j) = largest i<j s.t. i does not conflict with |
° @

= 0 if no such i exists

OPT(j) = optimal value on instance 1,..,j

Property of OPT

-y =

OPT(j) = max { v, t OPT(p(j)), OPT(j-1) }

Given ,
how can one figure out if

in optimal solution or not?

A recursive algorithm

Compute-Opt(j)

Correct for j=0

Proof of
correctness by

induction on

=OPT(p(j))

= OPT(j-1)

OPT(j) = max{v,+OPT(p(j)), OPT(j-1) }

Exponential Running Time

L .
I L
2 i) = i-
F - [p(j) =j-2 }
F —
4
- — Only 5 OPT
) S values!
I L

<7
OPT(3)

Formal
proof: Ex.

OPT(1) OPT(1)

Using Memory to be smarter

P/ow (a,n) \ Pow (a,n) \

Il n_is even and = 2 /I nis even and = 2
t= Pow(a,n/2)
return Pow(a,n/2) * Pow(a, n/2)
. returnt”

O(n) as we recompute! O(log n) as we compute only once

How many distinct OPT values?

A recursive algorithm

M-Compute-Opt()) M-Compute-Opt()
= OPT()

Run time = O(# recursive calls)

Bounding # recursions

M-Compute-Opt())

Whenever a recursive call is made an
value is assigned

At most valuesof can be assigned

Property of OPT

OPT(j) = max { v; + OPT(p(j)), OPT(j-1) }

Given

one can compute

Recursion+ memory = [teration

Iteratively compute the OPT(j) values

lterative-Compute-Opt

Reading Assighment

Sec 6.1, 6.2 of [KT]

When to use Dynamic Programming
(i s e

9

ol

‘A‘"‘l

¥

There are polynomially many sub-problems

4

Richard Bellman

Optimal solution can be computed from solutions to sub-problems

There is an ordering among sub-problem that allows for iterative solution

