Lecture 33

CSE 331

Nov 18, 2016

Mini project video grading

Mini project video grading

I apologize in advance for the fact that the grading of the rini-project will be a bit delayed. In particular, the top 10 videce who will get a chance to mave a prosentation for (potertially bonus points) might only get a fow days of notice.

```
mini_groject
```


Homework 9

Homework 9

Due by 12:30pm, Friday December 2, 016
Make sure you folow all the homework policies.
Al submissions stould be done via Auflab.

Question 1 (Programming Assignment) [40 points]

[^0]
! Note on Timeouts

For this problem the total timeout for Autolab is 480 s , which is higher the the usual timeouts of 180 s or 240 s in the earlier homeworks. So if your code takes a long time to run it'll take longer for you to get feedback on Autolab. Please start early to avoid getting deadlocked out before the feedback deadline.

Also for this problem, C++ and Java are way faster. The 480s timeout was chosen to accommodate the fact that Python is much slower than these two languages.

HW 8 solutions

End of the lecture

Graded HW 6

Done by today

Apologies for the delay!

CS Ed week (Dec 5)

with the Department of Computer
Science and Engineering at UB;
Children K-12 are invited to:

Monday. Dec. 5 I Davis Hall. UB

Weighted Interval Scheduling

Input: n jobs $\left(\mathrm{s}_{\mathrm{i}}, \mathrm{f}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right)$

Output: A schedule S s.t. no two jobs in S have a conflict

Goal: $\max \Sigma_{\mathrm{i} \text { in } \mathrm{s}} \mathrm{v}_{\mathrm{j}}$

Assume: jobs are sorted by their finish time

Couple more definitions

$p(j)=$ largest $i<j$ s.t. i does not conflict with j
$=0$ if no such i exists

OPT(j) = optimal value on instance $1, . ., \mathrm{j}$

Property of OPT

A recursive algorithm

Exponential Running Time

Using Memory to be smarter

How many distinct OPT values?

A recursive algorithm

M-Compute-Opt(j)

```
If j=0 then return 0
If M[j] is not null then return M[j]
M[j] = max { vi + M-Compute-Opt(p(j) ), M-Compute-Opt( j-1 ) }
return M[j]
```

> Run time = O(\# recursive calls)

Bounding \# recursions

M-Compute-Opt(j)

```
If j = 0 then return 0
If M[j] is not null then return M[j]
M[j] = max { vi + M-Compute-Opt(p(j) ), M-Compute-Opt(j-1 ) }
return M[j]
```

Whenever a recursive call is made an M value is assigned

At most n values of M can be assigned

Property of OPT

OPT(j) $=\max \left\{\mathrm{v}_{\mathrm{j}}+\operatorname{OPT}(\mathrm{p}(\mathrm{j})), \operatorname{OPT}(\mathrm{j}-1)\right\}$

Given OPT(1), ..., OPT(j-1),

 one can compute OPT(j)
Recursion+ memory = Iteration

Iteratively compute the OPT(j) values

Iterative-Compute-Opt

$$
\begin{aligned}
& M[0]=0 \\
& \text { For } j=1, \ldots, n \\
& M[j]=\max \left\{v_{j}+M[p(j)], M[j-1]\right\}
\end{aligned}
$$

Reading Assignment

Sec 6.1, 6.2 of [KT]

When to use Dynamic Programming

There are polynomially many sub-problems

Richard Bellman
Optimal solution can be computed from solutions to sub-problems

There is an ordering among sub-problem that allows for iterative solution

[^0]: < Note
 This assigrment can be solved in efther Java. Python or C+* fyou should pick the language you are most combrtable with. Ploase make nure to look at the supporting dscuthertiaion and fies for the languige of your choosing.

