Lecture 36

CSE 331 Nov 30, 2016

Quiz 2 on Monday

note 🚖	stop following	7 views
Quiz 2 in two weeks A gentle reminder that quiz 2 will be in class on Monday, December 5 from 1-1:10pm. The first two questions will be T/E without justification (so like two from Q1 on sample final- @735) and the third question will be T/E		
with justification (so like one from Q2 on sample final- @735). #pin quiz2		
edit · good note 0	Updated 14 minutes ago b	oy Atri Rudra

Official Feedback forms

We need volunteers!

with the Department of Computer Science and Engineering at UB:

Children K-12 are invited to:

Monday, Dec. 5 | Davis Hall, UB

Scheduling to min idle cycles

n jobs, ith job takes w_i cycles

You have W cycles on the cloud

What is the maximum number of jobs you can schedule?

When to use Dynamic Programming

O(nW) runtime

There are polynomially many sub-problems

 $OPT(j,W') \quad 0 \le j \le n, \ 0 \le W' \le W$


```
Richard Bellman
```

Optimal solution can be computed from solutions to sub-problems

 $OPT(j, W') = \dots$

There is an ordering among sub-problem that allows for iterative solution

OPT (j,W') only depends on OPT(j-1, 0), ..., OPT(j-1,W)

Shortest Path Problem

Input: (Directed) Graph G=(V,E) and for every edge e has a cost c_e (can be <0)

t in V

Output: Shortest path from every s to t

Today's agenda

Dynamic Program for shortest path

May the Bellman force be with you

