Lecture 37

CSE 331 Dec 2, 2016

Quiz 2 on Monday

You can use two letter sized cheatsheets

Last HW up!

Homework 10

Due by 12:30pm, Friday, December 9, 2016.

Make sure you follow all the homework policies.

All submissions should be done via Autolab.

Question 1 (Programming Assignment) [40 points]

Note

This assignment can be solved in either Java, Python or C++ (you should pick the language you are most comfortable with). Please make sure to look at the supporting documentation and files for the language of your choosing.

The Problem

In this problem, you are given a directed graph (in adjacency list representation) G = (V, E) where each each edge $e \in E$ has cost c_e (which can be negative but G does

HW 9 solutions

At the END of the lecture

Shortest Path Problem

Input: (Directed) Graph G=(V,E) and for every edge e has a cost c_e (can be <0)

t in V

Output: Shortest path from every s to t

When to use Dynamic Programming

There are polynomially many sub-problems

Richard Bellman

Optimal solution can be computed from solutions to sub-problems

There is an ordering among sub-problem that allows for iterative solution

Sub-problems

OPT(u,i) = cost of shortest path from u to t with at most i edges

When to use Dynamic Programming

There are polynomially many sub-problems

Richard Bellman

Optimal solution can be computed from solutions to sub-problems

There is an ordering among sub-problem that allows for iterative solution

Today's agenda

Finish Bellman-Ford algorithm

Analyze the run time

Natural order among OPT(u,i) values?

The recurrence

OPT(u,i) = shortest path from u to t with at most i edges

 $OPT(u,i) = \min \left\{ OPT(u,i-1), \min_{(u,w) \text{ in } E} \left\{ c_{u,w} + OPT(w,i-1) \right\} \right\}$

Some consequences

OPT(u,i) = shortest path from u to t with at most i edges

$$OPT(u,i) = \min \left\{ OPT(u, i-1), \min_{(u,w) \text{ in } E} \left\{ c_{u,w} + OPT(w,i-1) \right\} \right\}$$

OPT(u,n-1) is shortest path cost between u and t

Group talk time: How to compute the shortest path between **s** and **t** given all OPT(u,i) values

Longest path problem

Given G, does there exist a simple path of length n-1 ?

Longest vs Shortest Paths

Two sides of the "same" coin

Shortest Path problem

Can be solved by a polynomial time algorithm

Is there a longest path of length n-1?

Given a path can verify in polynomial time if the answer is yes

Poly time algo for longest path?

Clay Mathematics Institute

Dedicated to increasing and disseminating mathematical knowledge

HOHE ABOUT CHI PROGRAME NEWS & EVENTS AWARDS SCHOLARS PUBLICATIONS

First Clay Mathematics Institute Millennium Prize Announced

Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman

- * Birch and Swinnerton-Dver Conjecture
- * Hodge Conjecture
- * Navier-Stokes Equations
- P vs NP
- Polincaré Conjecture
- to Philadel and a second build and a second second

P vs NP question

 \mathbf{P} : problems that can be solved by poly time algorithms

NP: problems that have polynomial time verifiable witness to optimal solution

Alternate NP definition: Guess witness and verify!

Proving $P \neq NP$

Pick any one problem in NP and show it cannot be solved in poly time

Pretty much all known proof techniques *provably* will not work

Proving P = NP

Will make cryptography collapse

Compute the encryption key!

Prove that all problems in NP can be solved by polynomial time algorithms

A book on P vs. NP

High level view of CSE 331

If you are curious for more

CSE 429 or 431: Algorithms

CSE 396: Theory of Computation

