Lecture 38

CSE 331 Dec 5, 2016

Quiz 2

1:00-1:10pm

Lecture starts at 1:15pm

Please write your UBIT name

Shortest Path Problem

Input: (Directed) Graph G=(V,E) and for every edge e has a cost c_e (can be <0)

t in V

Output: Shortest path from every s to t

Longest path problem

Given G, does there exist a simple path of length n-1 ?

Longest vs Shortest Paths

Two sides of the "same" coin

Shortest Path problem

Can be solved by a polynomial time algorithm

Is there a longest path of length n-1?

Given a path can verify in polynomial time if the answer is yes

Poly time algo for longest path?

Clay Mathematics Institute

Dedicated to increasing and disseminating mathematical knowledge

HOME ABOUT CMI PROGRAMS

NEWS & EVENTS

AWARDS

SCHOLARS | PUBLICATIONS

First Clay Mathematics Institute Millennium Prize Announced

Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman

- Birch and Swinnerton-Dyer Conjecture
- Hodge Conjecture
- Navier-Stokes Equations
- <u>◆ P vs NP</u>
- Poincaré Conjecture

P vs NP question

 \mathbf{P} : problems that can be solved by poly time algorithms

NP: problems that have polynomial time verifiable witness to optimal solution

Alternate NP definition: Guess witness and verify!

Proving $P \neq NP$

Pick any one problem in NP and show it cannot be solved in poly time

Pretty much all known proof techniques *provably* will not work

Proving P = NP

Will make cryptography collapse

Compute the encryption key!

Prove that all problems in NP can be solved by polynomial time algorithms

A book on P vs. NP

High level view of CSE 331

If you are curious for more

CSE 429 or 431: Algorithms

CSE 396: Theory of Computation

Now relax...

Randomized algorithms

What is different?

Algorithms can toss coins and make decisions

A Representative Problem

http://calculator.mathcaptain.com/coin-toss-probability-calculator.html

Hashing

Further Reading

Chapter 13 of the textbook

Approximation algorithms

What is different?

Algorithms can output a solution that is say 50% as good as the optimal

A Representative Problem

Vertex Cover

Further Reading

Chapter 12 of the textbook

Online algorithms

What is different?

Algorithms have to make decisions before they see all the input

A Representative Problem

Secretary Problem

Data streaming algorithms

What is different?

https://www.flickr.com/photos/midom/2134991985/

One pass on the input with severely limited memory

A Representative Problem

Compute the top-10 source IP addresses

Distributed algorithms

What is different?

Input is distributed over a network

A Representative Problem

Consensus

Beyond-worst case analysis

What is different?

Analyze algorithms in a more instance specific way

A Representative Problem

Intersect two sorted sets

Further Reading

http://theory.stanford.edu/~tim/f14/f14.html

Algorithms for Data Science

What is different?

Algorithms for non-discrete inputs

A Representative Problem

Compute Eigenvalues

Johnson Lindenstrauss Lemma

http://www.scipy-lectures.org/_images/pca_3d_axis.jpg

The simplest non-trivial join query

Intersection of R and S

Assume R and S are sorted

Let us concentrate on comparison based algorithms

Assume $|\mathbf{R}| = |\mathbf{S}| = \mathbf{N}$

Not all inputs are created equal

We need a faster/adaptive algorithm

An assumption

Output of the join is empty

MERGE is (near) instance optimal

Benchmark: Minimum number of comparisons (C) to "certify" output

Coding Theory

Communicating with my 5 year old

Different Channels and Codes

- Internet
 - Checksum used in mult layers of TCP/IP stack
- Cell phones
- Satellite broadcast

 TV
- Deep space telecommunications
 - Mars Rover

"Unusual" Channels

- Data Storage
 - CDs and DVDs
 - RAID
 - ECC memory
- Paper bar codes
 UPS (MaxiCode)

Codes are all around us

Redundancy vs. Error-correction

- Repetition code: Repeat every bit say 100 times
 - Good error correcting properties
 - Too much redundancy
- Parity code: Add a parity bit
 - Minimum amount of redundancy
 - Bad error correcting properties
 - Two errors go completely undetected
- Neither of these codes are satisfactory

Two main challenges in coding theory

- Problem with parity example
 - Messages mapped to codewords which do not differ in many places
- Need to pick a lot of codewords that differ a lot from each other
- Efficient decoding
 - Naive algorithm: check received word with all codewords

The fundamental tradeoff

 Correct as many errors as possible with as little redundancy as possible

Can one achieve the "optimal" tradeoff with *efficient* encoding and decoding ?

Interested in more?

CSE 545, Spring 201?

Whatever your impression of the 331

Hopefully it was fun!

Thanks!

Except of course, HW 10, presentations and the final exam