Lecture 39

CSE 331
Dec 7, 2016

Final exam piazza post

Final exam post

ITlistart off with some generic comments:

* The final exam will be based on all the material we have seen in class till the lecture on Monday Dec $\mathrm{S} 0 . \mathrm{e}$. up to the P vs NP stuti).
* The lecture on Wednesday. Dec 6 wil be a Q A A session (where you can ask any 331 related questions)- see e829.
- Exam will be from noon to $2: 30$ on Friday, Dec 16 in class (KNOX 110). Note that the exam wil be for 2.5 hours and not 3 hours as it suys on HuB.

Next are comments related to preparing for the finals:

1. Take a look at the sample final (0735) and spend some quality time solving it. Unike the homeworks, il might be better to by to do this on your own. Unilke the sample mid-term, this one is an actual 331 fral exam so in addition to the format, you can also gauge how hard the final exam is going to be (your fral exam wil be the same ballpark). However as wth the sample mid-term, you make deduction about the coverage of topics at your own perl (but see points below). Once you have spent time, on it on your own, take a look at the sample Enal solutions ($\mathbf{6 7 3 5}$).
2. Stay tured for more information on extra Ofts (during the exam week).
3. Attend the QRA session (Wednesday, Dec 6) in class.
4. The actual final will have the same format as the sample final The first question will be T/F, 2nd will be T/F with justification, the rest of the three wil be longer questions and will ask you to design algorthems (parts of them might be jast anslyzing an algoritim)

Mini project video grading

Will be done tonight

If your group is selected for presentation you'll be notified by tonight

Algorithms for Data Science

What is different?

Algorithms for non-discrete inputs

A Representative Problem

Compute Eigenvalues
Further Reading

Johnson Lindenstrauss Lemma

http://www.scipy-lectures.org/_images/pca_3d_axis.jpg

The simplest non-trivial join query

Intersection of R and S

Assume R and S are sorted

Let us concentrate on comparison based algorithms

Assume $|R|=|S|=N$

Not all inputs are created equal

We need a faster/adaptive algorithm

The MERGE algorithm works

An assumption

Output of the join is empty

MERGE is (near) instance optimal

Benchmark: Minimum number of comparisons (C) to "certify" output

Need a comparison to rule the value out
Each value involved with ≤ 2 comparisons
Once the pointer moves the value is never seen again

Each move takes $\log \mathrm{N}$ comparisons

Coding Theory

Communicating with my 5 year old

"Code" C

"Akash English"
$C(x)$ is a "codeword"

The setup

Mapping C

Error-correcting code or just code
Encoding: $x \rightarrow C(x)$
Decoding: $y \rightarrow x$
$C(x)$ is a codeword

Different Channels and Codes

- Internet
- Checksum used in mult layers of TCP/IP stack
- Cell phones
- Satellite broadcast
- TV
- Deep space telecommunications
- Mars Rover

"Unusual" Channels

- Data Storage
- CDs and DVDs
- RAID
- ECC memory

- Paper bar codes
- UPS (MaxiCode)

Codes are all around us

Redundancy vs. Error-correction

- Repetition code: Repeat every bit say 100 times
- Good error correcting properties
- Too much redundancy
- Parity code: Add a parity bit
- Minimum amount of redundancy

1000011

- Bad error correcting properties
- Two errors go completely undetected
- Neither of these codes are satisfactory

Two main challenges in coding theory

- Problem with parity example
- Messages mapped to codewords which do not differ in many places
- Need to pick a lot of codewords that differ a lot from each other
- Efficient decoding
- Naive algorithm: check received word with all codewords

The fundamental tradeoff

- Correct as many errors as possible with as little redundancy as possible

Can one achieve the "optimal" tradeoff with efficient encoding and decoding ?

Interested in more?

CSE 545, Spring 201?

Whatever your impression of the 331

Hopefully it was fun!

Thanks!

Except of course, HW 10, presentations and the final exam

