Lecture 8

CSE 331

Sep 16, 2016

HW 2 has been posted

Homework 2

Due by 12:30pm, Friday, September 23, 2016.
Make sure you folow all the homework policies.
Al submissions should be done via Autolab.

Sample Problem

The Problem

This problem is kat to get you thiriong about asymptotic analyais ind input slant
As integer $n \geq 2$ is a prime, it the only divisors it has is 1 and n. Corsider the foliowing agorithm so checkit the given rumber n is porme or not:

 showthm everwetn

Autolab Updates

Q1 (NRMP)

Admin Options

Edit assessment
Gradesubmissions

Rebease all crodes
Wthdraw all grades
Export assessment
Reloud config file

Manage extersions
Manage submissions

Viewstatistics
Bulkimport grades
Fulk meraort prades

Submit your solution in any of C++//bwa/Python. Note that autograding feedback will stop at Thursday midnight (atough you can stililsubmit tiW Friday $12-30 \mathrm{pm}$ but you mï̀ only see a grade ofol

Due at: Friday, $\operatorname{Sep} 23 \mathrm{rd} 2016,12: 30: 00 \mathrm{pm}$
Last day to handin: Friday, Sep 23rd 2016, 12:30:00 pm
Language $*: C+\quad$;
Sources *:

* denotes required fields. The submission cannot be completed without fling out the required fields.

Autolab Updates

Q2 (Home wrecker)

Admin Options
Edt assessment
Grade submissions
Release all grades
Wthdraw afl grades
Export assessment
Relosd config file
Manage extersions
Manage submissions
Vewstatestics
Bulk import grades
Butk export grades

Remember to make sure you preview your uploaded PDF to malie sure it is not comupted. If you did not use any sourtes or collaborate just say "None" in the appropriate tertbox

```
Due at: Fridsy, Sep 23ed 2016,12:21:00 pm
Last day to handinc Friday, Sep 23rd 2016, 1230000 pm
Sources*:
\(\square\)
```


Collaborators*:

"denotes required Seids. The submission cannot be completed without filling out the required fields.

Submit File

Solutions to HW1

Handed out at the end of the lecture

Project group due in a week

CSE 331 Mini project choices

Fall 2016

Please chock the table below before submitting your mini project pitch to meke sure your case stucty is not boing used by another group. Case studies are assigned on a frst come frst serve basis.

$g(n)$ is $O(f(n))$

$g(n)$ is $\Omega(f(n))$

Properties of $O($ and Ω)

Transitive

Additive
g is $O(f)$ and f is $O(h)$ then g is $O(h)$
g is $O(h)$ and f is $O(h)$ then $\mathrm{g}+\mathrm{f}$ is $\mathrm{O}(\mathrm{h})$

Multiplicative
g is $O\left(h_{1}\right)$ and f is $O\left(h_{2}\right)$ then $g^{*} f$ is $O\left(h_{1}{ }^{*} h_{2}\right)$

Reading Assignments

Sections 1.1, 1.2, 2.1, 2.2 and 2.4 in [KT]

Another Reading Assignment

Analyzing the worst-case runtime of an algorithm

Some notes on stratogies to prove Big-Oh and Eig-Omega bounds on runtime of an algortrm.

The setup

 of stese taken by the algorithm A on input x. Then

$$
T(N)=\operatorname{mas}_{\operatorname{Estan} N} t_{A}(\mathbf{x})
$$

Preliminaries

We now colect two propertes of asymptotic notution that we wil need in Pia fote (we ses these in class todayt-

Questions?

Today's agenda

Asymptotic run time

Analyzing the run time of the GS algo

Gale-Shapley Algorithm

Intially all men and women are free

While there exists a free woman who can propose
Let w be such a woman and m be the best man she has not proposed to
w proposes to m
If m is free
(m, w) get engaged
Else (m,w') are engaged
If m prefers w ' to w
w remains free
Else
(m, w) get engaged and w' is free
Output the engaged pairs as the final output

Implementation Steps

How do we represent the input?

How do we find a free woman w?

How would w pick her best unproposed man m ?

How do we know who m is engaged to?

How do we decide if m prefers w ' to w ?

Arrays and Linked Lists

Today's agenda

$\mathrm{O}\left(\mathrm{n}^{2}\right)$ implementation of the Gale-Shapley algorithm

More practice with run time analysis

Gale-Shapley Algorithm

Intially all men and women are free
At most n^{2} iterations
While there exists a free woman who can propose
Let w be such a woman and m be the best man she has not proposed to w proposes to m

If m is free
(m, w) get engaged
Else (m, w^{\prime}) are engaged
If m prefers w ' to w
w remains free
Else

$$
(m, w) \text { get engaged and w' is free }
$$

Output the engaged pairs as the final output

