Lecture 9

CSE 331 Sep 19, 2016

Mini Project choice due Sep 26

note 🖆	0 views
Mini project needs groups of size EXACTLY 3 A gentle reminder that your group composition is due in just over a week (11:50pm on Monday, Sep 26).	Actions *
The important thing to note is that you need to send me groups of size EXACTLY three. This means you are responsible for finding two or in 331 to form your group. I will not make any group assignments.	ther students
Feel free to use the comments on this post to try and find others who are still looking to form a group.	
Traight	
Updateid Just	now by Abt Rudna

Gale-Shapley Algorithm

At most n² iterations

Intially all men and women are free

While there exists a free woman who can propose

Output the engaged pairs as the final output

Implementation Steps

(0) How to represent the input?

(1) How do we find a free woman w?

(2) How would w pick her best unproposed man m?

(3) How do we know who m is engaged to?

(4) How do we decide if m prefers w' to w?

Overall running time

Init(1-4)

n² X (Query/Update(1-4))

Questions?

Puzzle

Prove that **any** algorithm for the SMP takes $\Omega(n^2)$ time

Main Steps in Algorithm Design

Reading Assignments

Sec 1.1 and Chap. 2 in [KT]

Up Next....

Graphs

Graphs are omnipresent

What does this graph represent?

And this one?

Math articles on Wikipedia

And this one?

Rest of today's agenda

Basic Graph definitions

Paths Sequence of vertices connected by edges Connected

Path length 3

Connectivity

u and w are connected iff there is a path between them

A graph is connected iff all pairs of vertices are connected

Connected Graphs

Every pair of vertices has a path between them

Sequence of k vertices connected by edges, first k-1 are distinct

Formally define everything

http://imgs.xkcd.com/comics/geeks_and_nerds.png

Connected undirected graph with no cycles

Rooted Tree

A rooted tree

How many

rooted trees

can an n

vertex tree

have?

SG's

parent=AC

AC's

child

=SG

Pick any vertex as root

Let the rest of the tree hang under "gravity"

Rest of Today's agenda

Prove n vertex tree has n-1 edges

Algorithms for checking connectivity