Lecture 9

CSE 331
Sep 19, 2016

Mini Project choice due Sep 26

Mini project needs groups of size EXACTLY 3
A gentie reminder that your group composition is due in just over a weok (11.60 pm on Monday, Sep 26).
The importand fing to nofe is that you need to sond me groups of size EXACTLY three. This means you ave responelible for finding bwo other studects in 331 to form your group. I will not makie ary group assignments.

Feel free to use the comments on this post to try and find others who are still locking to form a group.

Gale-Shapley Algorithm

Intially all men and women are free
At most n^{2} iterations
While there exists a free woman who can propose
Let w be such a woman and m be the best man she has not proposed to w proposes to m

If m is free
(m, w) get engaged
Else (m, w^{\prime}) are engaged
If m prefers w ' to w
w remains free
Else

$$
(m, w) \text { get engaged and w' is free }
$$

Output the engaged pairs as the final output

Implementation Steps

(0) How to represent the input?
(1) How do we find a free woman w?
(2) How would w pick her best unproposed man m ?
(3) How do we know who m is engaged to?
(4) How do we decide if m prefers w ' to w ?

Overall running time

Init(1-4)

$n^{2} \times($ Query $/ U p d a t e(1-4))$

Questions?

Puzzle

Prove that any algorithm for the SMP takes $\Omega\left(\mathrm{n}^{2}\right)$ time

Main Steps in Algorithm Design

NRMP
 National Residene Matching Program

Qann Page
Nata

Correctness Analysis

Reading Assignments

Sec 1.1 and Chap. 2 in [KT]

Up Next....

Graphs

Representation of relatior Edge airs of entities/elements

Graphs are omnipresent

 jetBlue3 12.4.4.12159

Airline Route maps

What does this graph represent?

And this one?

Math articles on Wikipedia

ChrisHarrison.net

And this one?

Rest of today's agenda

Basic Graph definitions

Paths

Connectivity

u and w are connected iff there is a path between them

A graph is connected iff all pairs of vertices are connected

Connected Graphs

Every pair of vertices has a path between them

Cycles

Sequence of k vertices connected by edges, first $k-1$ are distinct

Formally define everything

Tree

Connected undirected graph with no cycles

Rooted Tree

A rooted tree

Rest of Today's agenda

Prove n vertex tree has n -1 edges

Algorithms for checking connectivity

