
Recitation 11 (11/14 - 11/18) 
 
Recurrence Relations - Special Case T(n) = T(n/2)+O(1)  
 
Things to remember from last week:  

= number of subproblemsq  
 = size of each subproblemx  

 = work done for each subproblemn/xc level   
 =  = total about of work done at each level(cn/2 )qj j q/j) cn( j *   

 = levels of recursionnlogx  

Case q = 1 : Binary Search 

Each level in our unrolling will have no q  value. Instead, it will just have time c  plus the 
time for the previous. 
 

 
 

T(n/2) + O(1) → Size of the input is halved every time but work at each level is constant 
(solved on page 243) 
 
We see that the amount of work being done at each level is constant and there are log2n levels.  
 
The critical question ends up being how many levels of constant work: O(log2n) 
 

 



 
 
(From last week) 
 
Page 219: T(n/2) + O(n) (if we were combining back together)  
 
At an arbitrary level j , there is one instance, size n/2^j  and contributes cn/2^j  to the running time. 
 

 
Working out this geometric sum, we will find that it converges to 2.  
Thus, we can say, for recurrence T(n/2) +O(n): 

 

Adversarial Lower Bound 
Lower Bounds Previously: Show the lower bound for a specific  algorithm 
Goal of Adversarial Lower Bound: Show lower bound for any  correct algorithm that solves 
the problem 
 
Adversary - one’s opponent in a contest or dispute 
 
Algorithm ↔ Adversary  

● algorithm wants answer to algo quickly 
● the adversary is trying to come up with input that will make algorithm take a long time 
● We want to show that adversary could force algorithm to do some amount of work 

which becomes the lower bound 
 
Theorem 
Every  correct algorithm that solves the problem of searching in a sorted list needs Ω(logn) time. 
 
There exist algorithms that work well for the specific case and otherwise are O(log n) in 
general. We want an algorithm whose lower bound is strictly . (log n)Ω   
 
Discuss the two instances in the support pages where v is not in the input and where v is 
exactly the middle value of the input. 
 
Example: Binary Search - Go over proof and reasoning after the video from below:  
 
http://www-student.cse.buffalo.edu/~atri/cse331/support/lower-bound/index.html 

 



 
 
Prim’s Algorithm 
 

● Similar in functionality to Dijkstra’s 
● Run example on graph below 

 

 
Solution 

 

 



 

 

 


