Recitation 13 (11/28-12/2)

- Remind them about the 480s timeout for HW 9
- Recap last week's recitation, answer any questions people may have: http://www-student.cse.buffalo.edu/~atri/cse331/fall16/recitations/Recitation12.pdf
- Dynamic Programming (source: Zulkar's recitation notes from last year, just typed out)
- Divide problem into subproblems
- Solve each subproblem
- Combine to get original solution
- This should look a lot like divide and conquer!
- Differences below

Divide and Conquer	Dynamic Programming
Independent subproblems	Overlapping subproblems
Solve top down	Solve bottom up (or top down using memoization)
Usually recursive	Backtracking

Ex: Divide and Conquer vs. Dynamic Programming Solutions (same problem)

Fibonacci Series - 11235813
def: $\mathrm{fib}[\mathrm{n}]=\mathrm{fib}[\mathrm{n}-1]+\mathrm{fib}[\mathrm{n}-2]$

Assume fib[0] = 0 and fib[1] = 1
This is all you know and you want to get fib[5]

$$
\begin{aligned}
\mathrm{fib}[5]= & \mathrm{fib}[4]+\mathrm{fib}[3] \\
& =\mathrm{fib}[3]+\mathrm{fib}[2] \\
& =\mathrm{fib}[2]+\mathrm{fib}[1]
\end{aligned}
$$

The above has overlapping subproblems. Better solution to the problem \rightarrow Solve smaller subproblems first, store them and use them to solve the larger subproblems
fib(n):

$$
\begin{aligned}
& \mathrm{fib}[0]=0 \\
& \mathrm{fib}[1]=1
\end{aligned}
$$

```
for i in range(2,n):
    fib[i] =f[i-1] + f[i-2]
return fib[n]
```


Billboard Problem:

sites for a billboard, each at a location x_{i} and each site generates r_{i} revenue
Goal: Maximize revenue with the constraint: $\min \left(\operatorname{dist}\left(x_{i}, x_{i+1}\right)\right)>5$

Example:

Bottom-Up (Dynamic Programming Style)

- Assume only 1 site

$\mathrm{x} 1=6$
r1 $=5$
Optimal solution: opt(1) = 5
- Assume 2 sites

$$
\begin{array}{ll}
\mathrm{x} 1=6 & \mathrm{x} 2=7 \\
\mathrm{r} 1=5 & \mathrm{r} 2=6
\end{array}
$$

- Don't pick x_{2} - optimal solution is the same as above $=5$
- Pick x_{2} - eliminate all sites within a 5 mile radius of x_{2}
$\operatorname{opt}(2)=\max \left(o p t(1), r_{2}\right)=\max \{5,6\}=6$
- Assume 3 sites - 2 options

- Don't pick x_{3} : opt(2)
- Pick x_{3} : opt $(x 1)+r 3$
$\max \{\operatorname{opt}(2), \operatorname{opt}(x 1)+r 3\}=\{6,5+5\}=\{6,10\}=10$

Generic Formula (try to get students to come up with this for you)

$\operatorname{opt}\left(\mathrm{x}_{\mathrm{j}}\right)=\max \left\{\operatorname{opt}\left(\mathrm{x}_{\mathrm{j}-1}\right), \operatorname{opt}\left(\mathrm{x}_{\mathrm{ej}}\right)+\mathrm{r}_{\mathrm{j}}\right\}$ (where e_{j} is outside of the 5 mile radius $)$
Algorithm:
M[]\leftarrow stores value of opt from prev eq
$\mathrm{M}[0]=0$
$\mathrm{M}[1]=r_{1}$
for $\mathrm{j}=2 . . . \mathrm{n}$:
compute $\mathrm{M}[\mathrm{j}]$ based on generic
return $\mathrm{M}[\mathrm{n}] \rightarrow$ will be the largest revenue

Runtime Analysis - O(n)

Look up for x_{ej} can be done in constant time
Keep two lists $-x_{i} \ldots x_{n} \& x_{i}^{\prime} . . x_{n}{ }^{\prime}$ where $x_{i}^{\prime}=x_{i}-5$
Now we can merge the two lists $O(n)$
Look for current element x_{j} in list $O(n)$ and $x_{e j}$ is to the left of it $O(1)$
Can preprocess and create a dict that contains the x_{ej} value for each x_{j}

