
Recitation 13 (11/28 - 12/2)

● Remind them about the 480s timeout for HW 9

● Recap last week’s recitation, answer any questions people may have:
http://www-student.cse.buffalo.edu/~atri/cse331/fall16/recitations/Recitation12.pdf

● Dynamic Programming (source: Zulkar’s recitation notes from last year, just typed out)

○ Divide problem into subproblems
○ Solve each subproblem
○ Combine to get original solution
○ This should look a lot like divide and conquer!
○ Differences below

Divide and Conquer Dynamic Programming

Independent subproblems Overlapping subproblems

Solve top down Solve bottom up (or top down using
memoization)

Usually recursive Backtracking

Ex: Divide and Conquer vs. Dynamic Programming Solutions (same problem)

Fibonacci Series - 1 1 2 3 5 8 13

def: fib[n] = fib[n-1] + fib[n-2]

Assume fib[0] = 0 and fib[1] = 1
This is all you know and you want to get fib[5]

fib[5] = fib[4] + fib[3]

= fib[3] + fib[2]
= fib[2] + fib[1]

The above has overlapping subproblems. Better solution to the problem
→ Solve smaller subproblems first, store them and use them to solve the larger subproblems

fib(n):

fib[0] = 0
fib[1] = 1

http://www-student.cse.buffalo.edu/~atri/cse331/fall16/recitations/Recitation12.pdf

for i in range(2,n):
fib[i] = f[i-1] + f[i-2]

return fib[n]

Billboard Problem:

sites for a billboard, each at a location xi and each site generates ri revenue

Goal: Maximize revenue with the constraint: min(dist(xi, xi+1)) > 5

Example:

Bottom-Up (Dynamic Programming Style)

● Assume only 1 site

Optimal solution: opt(1) = 5

● Assume 2 sites

○ Don’t pick x2 - optimal solution is the same as above = 5
○ Pick x2 - eliminate all sites within a 5 mile radius of x2

opt(2) = max(opt(1), r2) = max{5,6} = 6

● Assume 3 sites - 2 options

○ Don’t pick x3: opt(2)
○ Pick x3: opt(x1) + r3

max{opt(2), opt(x1) + r3} = {6, 5+5} = {6,10} = 10

Generic Formula (try to get students to come up with this for you)

opt(xj) = max{opt(xj-1), opt(xej)+rj} (where ej is outside of the 5 mile radius)

Algorithm:
M[] ← stores value of opt from prev eq
M[0] = 0
M[1] = r1
for j = 2...n:

compute M[j] based on generic
return M[n] → will be the largest revenue

Runtime Analysis - O(n)

Look up for xej can be done in constant time

Keep two lists - xi… xn & xi’..xn’ where xi’ = xi - 5
Now we can merge the two lists O(n)
Look for current element xj’ in list O(n) and xej is to the left of it O(1)
Can preprocess and create a dict that contains the xej value for each xj

