Recitation 3 (10/3-10/7)

Reminders -

- Your algorithm/proof idea should give a summary or overview of your algorithm/proof details. In other words, the grader should understand the premise of your solution without even having to look at your details.
- Most common mistake in HW2 Q2 (homewrecker problem) - Proof idea saying "I will find a pattern and then generalize it to work for any n ", or "I will show the existence of a homewrecker in the case of $n=2$ and then generalize it to work for any n". Both these ideas are inadequate because they don't describe what pattern you aim to leverage or how you will achieve this generalization to any n .
- Look at the requirements at the end of a question. Some questions only need proof idea/details, while some also need algo idea/details, big O/omega analysis etc. If you do not provide all required sections you're already losing some points

DFS/BFS overview -

- Just give definitions for now (BFS explores nearest neighbors of node before moving on to the next set of neighbors, DFS fully explores a certain path as far as possible before backtracking). Take questions (if any), but make sure students understand the 2 algorithms before moving on to next step.
- Mention that DFS does not compute distance correctly. Eg. consider the following (undirected) graph
$G=(\{A, B, C, D\},\{(A, B),(B, C),(C, D),(D, A)\}) G=(\{A, B, C, D\},\{(A, B),(B, C),(C, D),(D, A)\})$, i.e.
this is a cycle with four nodes. To compute the distance from A to D, DFS would either output 1 or 3 depending on which path it takes first (and if we're looking for minimum distance, 3 would be the wrong answer).
Mention that DFS can be modified to calculate distance, but it is not what it's made for.

Homework 4 Question 2 -

- Go over definitions of admissible distance, distance compatible property and friendship distance from the homework description. Go over example given in the homework description as well.
- Point out all the sections students have to provide answers for in the grading guidelines.

Homework 4 Question 3 -

- Review definition of BFS and DFS tree by showing the students the run of BFS/DFS on this graph - (start from node 1, and show them the BFS/DFS tree that is formed when you traverse the graph)

- Show BFS run on a triangle for an example when the BFS tree is unique, and on a 4-cycle (essentially a square) where the BFS tree is not unique.
- Show DFS run on a triangle for an example when the DFS tree is unique, and on a 4-cycle (essentially a square) where the DFS tree is not unique if you fix the adjacency list. Consider the same graph as in the overview -
$G=(\{A, B, C, D\},\{(A, B),(B, C),(C, D),(D, A)\}) G=(\{A, B, C, D\},\{(A, B),(B, C),(C, D),(D, A)\})$
If you start DFS from node A and fix B to appear before D in the adjacency list of A, then the DFS tree would be unique.
- For the Q, when we talk about uniqueness it is over all possible ordering in the adjacency lists.
- Take an example of 3 nodes connected together (like in a linked list). No matter which node you start from, the BFS/DFS tree are for this example are same and unique. The students' job in Q3 is if given a graph G and node r such that it has a tree T rooted at r which is the BFS and DFS tree, either prove that T is the only BFS tree and the only DFS tree for G, or prove this statement false with a counter-example.

