Lecture 14

CSE 331
Sep 29, 2017

Mini Project Pitch due WED

You can submit mini project reports now

You con now submit your mini project reports now. It is due in a bit over 2 weeiss: by 11:59pm on Wed, Oet 4 .
The minl-project poge has all the details on what is needed in the report.
Some important points:

- If you do not register your group by 11 -Sapm on Monday, you will get an astomatic 0 on the entre mini-project.
- The case-studies will be assigned in the order in which I grade your reports.
- If while gracing it tums out another group has already taken your case study I will ask you to choose another case study.
- Il you want to "book" your topic soones. I would recommend that you submit your report as soon as a is metoly and send me emil saying in is ready to be graded. Form your group on Autolab BEFORE submitting
- By defaull I will start grading on Oct 5.
your pitch
- This is a group submission. Please see the insfructions at the end of this post.
- Main thing: do NOT submit your report till your group is formed.
eve=******= Instructions on forming the group evenewew
- Under 'Options' dick on "Group Options"

Do not forget to add URL to your references

- Name your group if you want (not required)
* Enter the name of the 2nd person in your group and then click on "Create Group". (Uniess things have changed, Autolab does

HW 4 is now posted

Homework 4

Due by 11:00am, Friday, October 6, 2017
Make sure you folow all the homework policies.
Al submissions should be done via Autolab.

Sample Problem

The Problem
This probiem is just to get you finieing about gaphs und get more prastice with proots.
A forest with c components is a graph thatt is the union of c diyjoirt treen. The figure below thown for an eximple with $c=3$ and $n=13$ with the thee cornected components coloned blue, read and yellowl.

Note: Bonus points for the fastest submissions. See WARNING though.

Today’ s agenda

Run-time analysis of BFS (DFS)

Stacks and Queues

Last in First out

First in First out

Graph representations

Questions?

2 \# edges = sum of \# neighbors

$$
2 m=\Sigma_{u \text { in } v} n_{u}
$$

Give 2 pennies to each edge
Total \# of pennies $=2 \mathrm{~m}$

Each edges gives one penny to its end points

$$
\# \text { of pennies } u \text { receives }=n_{u}
$$

Breadth First Search (BFS)

Build layers of vertices connected to s

$$
L_{0}=\{s\}
$$

Assume $\mathrm{L}_{0}, . ., \mathrm{L}_{\mathrm{j}}$ have been constructed
L_{j+1} set of vertices not chosen yet but are connected to L_{j}
Stop when new layer is empty

Rest of Today's agenda

Quick run time analysis for BFS

Quick run time analysis for DFS (and Queue version of BFS)

Helping you schedule your activities for the day

$\mathrm{O}(\mathrm{m}+\mathrm{n}) \mathrm{BFS}$ Implementation

All the layers as one

BFS(s)
$\mathrm{CC}[\mathrm{s}]=\mathrm{T}$ and $\mathrm{CC}[\mathrm{w}]=\mathrm{F}$ for every $\mathrm{w} \neq \mathrm{s}$
Set $\mathrm{i}=0$
Set $\mathrm{L}_{0}=\{\mathrm{s}\}$
While L_{i} is not empty

$$
\mathrm{L}_{i+1}=\varnothing
$$

For every u in L_{i}
For every edge (u, w)
If $C C[w]=F$ then

$$
\mathrm{CC}[\mathrm{w}]=\mathrm{T}
$$

$$
\text { Add w to } L_{i+1}
$$

An illustration

Queue $O(m+n)$ implementation

BFS(s)

Questions?

Implementing DFS in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ time

Same as BFS except stack instead of a queue

A DFS run using an explicit stack

DFS stack implementation

DFS(s)
$\mathrm{CC}[\mathrm{s}]=\mathrm{T}$ and $\mathrm{CC}[\mathrm{w}]=\mathrm{F}$ for every $\mathrm{w} \neq \mathrm{s}$

Intitialize $\hat{S}=\{s\}$
While \hat{S} is not empty

Pop the top element u in \hat{S}
For every edge (u, w)
If $\mathrm{CC}[\mathrm{w}]=\mathrm{F}$ then

$$
C C[w]=T
$$

Push w to the top of \hat{S}

Questions?

Reading Assignment

Sec 3.3, 3.4 and 3.5 of [KT]

Directed graphs

Model asymmetric relationships

Precedence relationships
u needs to be done before w means (u, w) edge

Directed graphs

Directed Acyclic Graph (DAG)

Topological Sorting of a DAG

Order the vertices so that all edges go "forward"

