Lecture 14

CSE 331 Sep 29, 2017

Mini Project Pitch due WED

- · Name your group if you want (not required)
- · Enter the name of the 2nd person in your group and then click on 'Create Group'. (Unless things have changed, Autolab does

HW 4 is now posted

Homework 4

Due by 11:00am, Friday, October 6, 2017.

Make sure you follow all the homework policies. All submissions should be done via Autolab.

Sample Problem

The Problem

This problem is just to get you thinking about graphs and get more practice with proofs.

A forest with *c* components is a graph that is the union of *c* disjoint trees. The figure below shows for an example with *c* = 3 and *n* = 13 with the three connected components colored blue, read and yellow).

Note: Bonus points for the fastest submissions. See WARNING though.

Today's agenda

Run-time analysis of BFS (DFS)

Stacks and Queues

Last in First out

First in First out

Questions?

2 # edges = sum of # neighbors $2m = \sum_{u \text{ in } V} n_u$

Give 2 pennies to each edge

Total # of pennies = 2m

Each edges gives one penny to its end points

of pennies u receives = n_u

Breadth First Search (BFS)

Build layers of vertices connected to s

 $L_0 = \{s\}$

Assume L₀,..,L_j have been constructed

L_{i+1} set of vertices not chosen yet but are connected to L_i

Stop when new layer is empty

Use linked lists

Use CC[v] array

Rest of Today's agenda

Quick run time analysis for BFS

Quick run time analysis for DFS (and Queue version of BFS)

Helping you schedule your activities for the day

All the layers as one

BFS(s)

CC[s] = T and CC[w] = F for every $w \neq s$ Set i = 0Set $L_0 = \{s\}$ While L_i is not empty o $L_{i+1} = \emptyset$ For every u in L_i For every edge (u,w) If CC[w] = F then CC[w] = TAdd w to L_{i+1} i++

All layers are considered in firstin-first-out order

Can combine all layers into one queue: all the children of a node are added to the end of the queue

An illustration

Queue O(m+n) implementation

BFS(s)

Questions?

Implementing DFS in O(m+n) time

Same as BFS except stack instead of a queue

A DFS run using an explicit stack

DFS stack implementation

DFS(s)

CC[s] = T and CC[w] = F for every $w \neq s$

Intitialize $\hat{S} = \{s\}$

While Ŝ is not empty

Pop the top element u in Ŝ For every edge (u,w) If CC[w] = F then CC[w] = T Push w to the top of Ŝ Same O(m+n) run time analysis as for BFS

Questions?

Reading Assignment

Sec 3.3, 3.4 and 3.5 of [KT]

Directed graphs

Directed graphs

Each vertex has two lists in Adj. list rep.

Directed Acyclic Graph (DAG)

Topological Sorting of a DAG

Order the vertices so that all edges go "forward"

