Lecture 18

CSE 331
Oct 9, 2017

Quiz starts at 1pm and ends at 1:10pm

Lecture starts at 1:15pm

Interval Scheduling Problem

Input: n intervals $[\mathrm{s}(\mathrm{i}), \mathrm{f}(\mathrm{i})$) for $1 \leq \mathrm{i} \leq \mathrm{n}$

Output: A schedule S of the n intervals

No two intervals in S conflict
$|S|$ is maximized

Analyzing the algorithm

> R: set of requests

Set S to be the empty set

While R is not empty

Choose in R with the earliest finish time
Add i to S
Remove all requests that conflict with ifrom R
Return $\mathrm{S}^{*}=\mathrm{S}$

Greedy "stays ahead"

Today's agenda

Prove the correctness

Analyze run-time of the greedy algorithm

Algorithm implementation

Go through the intervals in order of their finish time

In general, if jth interval is the last one chosen Pick smallest $i>j$ such that $s[i] \geq f(j)$

The final algo

$O(n \log n)$ time sort intervals such that $f(i) \leq f(i+1)$

$\mathrm{O}(\mathrm{n})$ time build array $\mathrm{s}[1 . . \mathrm{n}]$ s.t. $\mathrm{s}[\mathrm{i}]=$ start time for i

> Add 1 to A and set $f=f(1)$
> For $\mathrm{i}=2$.. n
> If $s[i] \geq f$
> Add i to A
> Set $\mathrm{f}=\mathrm{f}(\mathrm{i})$

Return A* $=A$

Reading Assignment

Sec 4.1of [KT]

Questions?

The "real" end of Semester blues

Write up a term paper

Party!

Exam study

$$
331 \text { HW }
$$

The "real" end of Semester blues

Write up a term paper

Exam study

331 HW
Project

The algorithmic task

Write up a term paper

Scheduling to minimize lateness

Write up a term paper

Exam study
Party!
\dagger
331 HW

One possible schedule

