Lecture 18

CSE 331 Oct 9, 2017

Quiz starts at 1pm and ends at 1:10pm

Lecture starts at 1:15pm

Interval Scheduling Problem

Input: n intervals [s(i), f(i)) for $1 \le i \le n$

Output: A *schedule* **S** of the **n** intervals

No two intervals in S conflict

S is maximized

Analyzing the algorithm

R: set of requests

Set S to be the empty set

While R is not empty

Choose i in R with the earliest finish time

Add i to S

Remove all requests that conflict with i from R

Return $S^* = S$

Greedy "stays ahead"

Today's agenda

Prove the correctness

Analyze run-time of the greedy algorithm

Algorithm implementation

Go through the intervals in order of their finish time

The final algo

O(n log n) time sort intervals such that $f(i) \le f(i+1)$

O(n) time build array s[1..n] s.t. s[i] = start time for i

Add 1 to A and set f = f(1)

For i = 2 .. n

If s[i] \ge f Add i to A Set f = f(i)

Return $A^* = A$

Reading Assignment

Sec 4.1of [KT]

Questions?

The "real" end of Semester blues

The "real" end of Semester blues

There are deadlines and durations of tasks

Write up a term paper

The algorithmic task

Scheduling to minimize lateness

All the tasks have to be scheduled GOAL: minimize maximum lateness

Write up a term paper

One possible schedule

All the tasks have to be scheduled GOAL: minimize maximum lateness

