Lecture 23

CSE 331
Oct 25, 2017

Graded pitch

Mini project pitch grading done

Again, I apologize for the delay in getting the grading of the mini project report done. At the end of the post are the stats and grading rubric.

Some comments:

- The final list is here: http://www-student.cse.buffalo.edu/~atri/cse331/fall17/mini-project/algos.html
- Some of you had chosen a case study that was already taken: please read through the email that I sent you.
- A gentle reminder that the video is due by 11.59 pm Mon, Nov 13
- When you make your video, please make sure you go through all the requirements: http://www-student.cse.buffalo.edu /~atri/cse331/fall17/mini-project/index.html
- Pay attention to my comments and make sure you incorporate them in your video. Here are the main reasons why groups lost point:
- The individual impact did not focus on a specific individual but on a group
- Claims were either speculative and/or not backed by references

Problem	Mean	Median	StdDev	Max
Case Study: Algorithm Idea	13.3	15.0	2.9	15.0

Shortest Path Problem

Another more important application

Is BGP a known acronym for you?

Routing uses shortest path algorithm

Shortest Path problem

Input: Directed graph $G=(\mathrm{V}, \mathrm{E})$
Edge lengths, I_{e} for e in E

"start" vertex s in V

Output: All shortest paths from s to all nodes in V

Dijkstra' s shortest path algorithm

Dijkstra' s shortest path algorithm

Couple of remarks

The Dijkstra's algo does not explicitly compute the shortest paths

Can maintain "shortest path tree" separately

Dijkstra's algorithm does not work with negative weights

Left as an exercise

Rest of Today's agenda

Prove the correctness of Dijkstra's Algorithm

Runtime analysis of Dijkstra's Algorithm

Reading Assignment

Sec 4.4 of [KT]

