
Lecture	26

CSE	331
Nov	1,	2017



Temp	Grades	assigned



One-on-one	meetings



Mini	project	video	due	~1.5	weeks

http://www-student.cse.buffalo.edu/~atri/cse331/fall17/mini-project/index.html



Give	us	feedback!



Cut	Property	Lemma	for	MSTs

S V	\ S

Cheapest	crossing	edge	is	in	allMSTs

Condition:	S and	V\S are	non-empty

Assumption:	All	edge	costs	are	distinct



S V	\ S

Optimality	of	Kruskal�s	Algorithm

Input:	G=(V,E),	ce>	0	for	every	e in	E

T	=	Ø

Sort	edges	in	increasing	order	of	their	cost

Consider	edges	in	sorted	order

If	an	edge	can	be	added	to	T without	adding	a	cycle	then	add	it	to	T

S
Nodes	

connected	to	red
in	(V,T)

S is	non-empty

V\S is	non-empty

First	crossing	edge	considered



Is	(V,T) a	spanning	tree?

No	cycles	by	design

Just	need	to	show	that	(V,T)	is	connected

S� V	\ S�

No	edges	here

G is	
disconnected!



Removing	distinct	cost	assumption

Change	all	edge	weights	by	very	small	amounts

Make	sure	that	all	edge	weights	are	distinct

MST	for	“perturbed”	weights	is	the	same	as	for	original

Changes	have	to	be	small	enough	so	that	this	holds

EXERCISE:	Figure	out	how	to	change	
costs



Running	time	for	Prim�s	algorithm
Similar	to	Dijkstra�s	algorithm

Input:	G=(V,E),	ce>	0	for	every	e in	E

S	=	{s},	T	=	Ø

While	S is	not	the	same	as	V

Among	edges	e=	(u,w) with	u in	S and	w not	in	S,	pick	one	with	minimum	cost	

Add	w to	S, e	to T

O(m log	n)



Running	time	for	Kruskal’s	Algorithm

Joseph	B.	Kruskal

Input:	G=(V,E),	ce>	0	for	every	e in	E

T	=	Ø

Sort	edges	in	increasing	order	of	their	cost

Consider	edges	in	sorted	order

If	an	edge	can	be	added	to	T without	adding	a	cycle	then	add	it	to	T

Can	be	verified	in	O(m+n) time

O(m2)	time	
overall

Can	be	implemented	in	O(m	log	n)	time	(Union-find	DS)



Reading	Assignment
Sec	4.5,	4.6	of	[KT]



High	Level	view	of	the	course
Problem	Statement

Algorithm

Problem	Definition

�Implementation�

Analysis Correctness+Runtime	Analysis

Data	Structures

Three	general	
techniques

Done	with	
greedy



Trivia



Divide	and	Conquer

Divide	up	the	problem	into	at	least	two	sub-problems

Recursively	solve	the	sub-problems

�Patch	up� the	solutions	to	the	sub-problems	for	the	final	solution



Sorting

Given	n numbers	order	them	from	smallest	to	largest

Works	for	any	set	of	elements	on	which	there	is	a	total	order



Insertion	Sort
Input:	a1,	a2,….,	an Make	sure	that	all	the	

processed	numbers	
are	sortedOutput:	b1,b2,…,bn

b1=	a1
for	i =2	…	n

Find	1	≤	j	≤	i	s.t.	ai lies	between		bj-1 and		bj

Move	bj to	bi-1 one	cell	�down�

bj=ai 4

3
2
1

a b

42

3
4

3

4

1

2
3
4

O(log n)

O(n)

O(n2)	overall



Other	O(n2)	sorting	algorithms

Selection	Sort:	In	every	round	pick	the	min	among	remaining	numbers

Bubble	sort:	The	smallest	number	“bubbles”	up



Divide	and	Conquer

Divide	up	the	problem	into	at	least	two	sub-problems

Recursively	solve	the	sub-problems

“Patch	up”	the	solutions	to	the	sub-problems	for	the	final	solution



Mergesort	Algorithm

Divide	up	the	numbers	in	the	middle

Sort	each	half	recursively

Merge	the	two	sorted	halves	into	one	sorted	output

Unless	n=2



How	fast	can	sorted	arrays	be	merged?

Group	talk	time



Mergesort	algorithm
Input:	a1,	a2,	…,	an Output:	Numbers	in	sorted	order

MergeSort(	a,	n	)

If	n	=	2	return the	order	min(a1,a2);	max(a1,a2)

aL =	a1,…,	an/2

aR =	an/2+1,…,	an

returnMERGE	(	MergeSort(aL,	n/2),	MergeSort(aR,	n/2)	)

If	n	=	1	return the	order	a1



An	example	run

MergeSort(	a,	n	)

If	n	=	2	return the	order	min(a1,a2);	max(a1,a2)
aL =	a1,…,	an/2

aR =	an/2+1,…,	an

returnMERGE	(	MergeSort(aL,	n/2),	MergeSort(aR,	n/2)	)

151 100 19 2 8 34

511 19 100

1 19 51 100

2 8 43

2 3 4 8

1 2 3 4 8 19 51 100

If	n	=	1	return the	order	a1



Correctness
Input:	a1,	a2,	…,	an Output:	Numbers	in	sorted	order

MergeSort(	a,	n	)

If	n	=	2	return the	order	min(a1,a2);	max(a1,a2)

aL =	a1,…,	an/2

aR =	an/2+1,…,	an

returnMERGE	(	MergeSort(aL,	n/2),	MergeSort(aR,	n/2)	)

By	
induction	

on	n

Inductive	step	follows	from	correctness	of	MERGE

If	n	=	1	return the	order	a1


