Lecture 26

CSE 331
Nov 1, 2017

Temp Grades assigned

Mid-term temp grade

(For detals on grading of mid-term exam, see a632. For one-on-one meetings to talk about your 331 performance see 0633 .)
Your temp letter grades have been assigred. To calculate your grade, you must frst calculate your raw score R as follows:

- Add up your HW scores from $H W 1-4$ to caliculate H (out of a max of 400)
- You need to do the following modification for each HW soore, If you got Q_{1}, Q_{2} and Q_{3} points on questons 1, 2 and 3 respectively in a HW, then your HW score should be $Q_{1}+\max \left(Q_{2}, 3 \cdot Q_{3}\right)+\min \left(Q_{2} / 3, Q_{3}\right)$. (This will swap your Question 2 and 3 scores 17 you do better on Question 3).
- Let Q be your quiz 1 score (out of a max of 10)
- Let M be your mid-term score (out of a max of 100).
- Let P be your miri-project pich score fout of a max of 100).

Then R is calculated as follows (out of a maximum possible of 58.5 :
$R=\frac{3 n}{400} \cdot H+Q \cdot \frac{35}{10}+\frac{3}{4}+\frac{p}{100}$,

0 know the above does not fully following the grading rubric since it dces not drop any HW score and does not substhate the quiz soove with the HW score if you better on the lattec. Howerver, since this is just supposed to give you an icha of where you stand in the course, I think the above is fine as a proxy)

One-on-one meetings

Meetings to discuss CSE 331 performance

I will emall those who have a D or below in their mid-term grade (for more detais on the grade see 3631). Of course you can also come and talk about your 391 performance even if you have a temp grade higher than D (though students with a D or below will get preferenct).

I have locked out certain times over next wook or so for 10 mins meetings. Please nobe that these are NOT walk-ins: if no one signs up for a slot, I might not be in my office then. If you want io come and talk with me, please emal me with ALL the slots below that work for you. Slots will be assigned on a first-come-first-serve basis.

Below are all the avalable siots (below the start times are listed: a slot that is already taken has a strike-througth

- Wednesday (Nov 1): 2.50pm, 300pm
- Thursday (Nov 2: $11: 30 \mathrm{am}, 1140 \mathrm{am}, 11: 50 \mathrm{am}, 1 \mathrm{pm}, 1: 10 \mathrm{pm}, 1: 20 \mathrm{pm}, 1: 30 \mathrm{pm}, 1: 40 \mathrm{pm}, 1: 50 \mathrm{pm}$
- Friday (Nov 3; 11:30am, 11:40am, 11:50am, 12pm, 12:10pm, 12:20pm, 2:10pm, 220pm, 2:30pm, 2:40pm, 2:50pm, 4:00pm, 4:10pm, 4:20pm, 4:30pm, 4:40pm
* Monday (Nov 6이: 4:20pm
* Tuesday (Nov 7): 1:30pm, 1:40pm, 1:50pm, 2:00pm, 2:10pm, 2:20pm, 2:30pm
* Wednesday (Nov i): $11 \mathrm{am}, 11: 10 \mathrm{am}, 1120 \mathrm{am}, 2: 50 \mathrm{pm}, 3 \mathrm{pm}, 3: 10 \mathrm{pm}, 3: 20 \mathrm{pm}$
* Thursday (Nov 9): 1 pm , 1:10pm, 1:20pm, 1:30pm, 1:40pm, 1:50pm

You can of course also stop by during my oflice hours fout students with Qs on the HW will get higher priority) and you unfortunately cannot book a slot.

Mini project video due ~1.5 weeks

The video

The vidobshould hevb the same contert as the pish but with more detals. Bome moet remarks:

 yideo.

For the side of compleseress we presert the fult oetals on she vides part belbes.

1. Trief suscription of the case shaby along with a reference for your case shaby
2. This should include a brief destription of the probiest, and
s A brief cescrigtion of how the choeen algorthmiti workc ie a Briel algorttom idea.
3. Brief desoription of the impoct of eigorithmis) on indwiduals in the case study

Note
To get filt eredif for this part the individur being mpacted should be ounside of CSE
3. Brief description of the impact of algorthmisi on organcations in the case shagy.
4. Bref desorption of the inpact of agortivioip on sociefy in tre case stude.

Citationll are nebded:

の inila
http://www-student.cse.buffalo.edu/~atri/cse331/fall17/mini-project/index.html

Give us feedback!

CSE 331 Fall 17 Nov feedback

The goal of this form is to collect feedback on vilious aspects of CSE 391 . Piease do tell us what is going wrong (so that we can try and for if) as wel as what is going right (so that we can continue doing those things). Filing in this form is complesely optional and anonymous.

Overall your feeling about CSE 331Very HappyChallenged but happyChallenged and mehChallenged and unhappyIm bored

Cut Property Lemma for MSTs

Condition: S and $V \backslash S$ are non-empty

Cheapest crossing edge is in all MSTs

Assumption: All edge costs are distinct

Optimality of Kruskal's Algorithm

Input: $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{c}_{\mathrm{e}}>0$ for every e in E
$T=\varnothing$
Sort edges increasing order of their cost
S is non-empty
$\mathrm{V} \backslash \mathrm{S}$ is non-empty
First crossing edge considered

Consider edges in sorted order
If an edge can be added to without adding a cycle chen add it to T

Is (V, T) a spanning tree?

No cycles by design

Just need to show that (V, T) is connected

Removing distinct cost assumption

Change all edge weights by very small amounts

Make sure that all edge weights are distinct

MST for "perturbed" weights is the same as for original

Changes have to be small enough so that this holds

Running time for Prim's algorithm

Similar to Dijkstra's algorithm

Input: $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{c}_{\mathrm{e}}>0$ for every e in E
$S=\{s\}, T=\varnothing$
While S is not the same as V
Among edges $e=(u, w)$ with u in S and w not in S, pick one with minimum cost Add w to S, e to T

Running time for Kruskal's Algorithm

Can be implemented in O(m log n) time (Union-find DS)

Input: $G=(V, E), c_{e}>0$ for every e in E
$T=\varnothing$

Sort edges in increasing order of their cost

Consider edges in sorted order

Joseph B. Kruskal

If an edge can be added to T without adding a cycle then add it to T

Reading Assignment

Sec 4.5, 4.6 of [KT]

High Level view of the course

Data Structures

Correctness+Runtime Analysis

Trivia

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems
"Patch up" the solutions to the sub-problems for the final solution

Sorting

Given n numbers order them from smallest to largest

Works for any set of elements on which there is a total order

Insertion Sort

Input: $a_{1}, a_{2}, \ldots, a_{n}$
Output: $\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{n}}$
$O\left(n^{2}\right)$ overall
Make sure that all the processed numbers

Find $1 \leq j \leq i$ s.t. a_{i} lies between b_{j-1} and b_{j} Move b_{j} to b_{i-1} one cell "down"

a	b
4	3
3	3
2	4
1	4

Other $\mathrm{O}\left(\mathrm{n}^{2}\right)$ sorting algorithms

Selection Sort: In every round pick the min among remaining numbers

Bubble sort: The smallest number "bubbles" up

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems
"Patch up" the solutions to the sub-problems for the final solution

Mergesort Algorithm

Divide up the numbers in the middle

Sort each half recursively

Unless $\mathrm{n}=2$

Merge the two sorted halves into one sorted output

How fast can sorted arrays be merged?

Mergesort algorithm

Input: $a_{1}, a_{2}, \ldots, a_{n}$
Output: Numbers in sorted order

```
MergeSort( a, n )
    If }n=1\mathrm{ return the order }\mp@subsup{a}{1}{
    If n=2 return the order min (a, (a)
    aL}=\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{n/2}{
    ar}=\mp@subsup{a}{n/2+1}{},\ldots,\mp@subsup{a}{n}{
    return MERGE ( MergeSort(a, n/2), MergeSort(a, n/2) )
```


An example run

MergeSort(a, n)
If $\mathrm{n}=1$ return the order a_{1}
If $\mathrm{n}=2$ return the order $\min \left(\mathrm{a}_{1}, \mathrm{a}_{2}\right) ; \max \left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)$
$a_{L}=a_{1}, \ldots, a_{n / 2}$
$a_{R}=a_{n / 2+1}, \ldots, a_{n}$
return MERGE (MergeSort($\left.a_{L}, n / 2\right)$, MergeSort $\left(a_{R}, n / 2\right)$)

Correctness

$$
\text { Input: } a_{1}, a_{2}, \ldots, a_{n}
$$

Output: Numbers in sorted order

```
MergeSort( a, n )
    If }n=1\mathrm{ return the order }\mp@subsup{a}{1}{
    If }\textrm{n}=2\mathrm{ return the order min}(\mp@subsup{\textrm{a}}{1}{},\mp@subsup{a}{2}{}); max(a (a, ,a)
    aL}=\mp@subsup{a}{1,\ldots,}{,}\mp@subsup{a}{n/2}{
    ar}=\mp@subsup{a}{n/2+1}{},\ldots,\mp@subsup{a}{n}{
    return MERGE 'MergeSort(a, n/2) MergeSort(a
```

Inductive step follows from correctness of MERGE

