Lecture 27

CSE 331 Nov 3, 2017

UB Hacking

You need to re-form groups

note 🖈	stop following	41 views
Video submission now open on Autolab Sorry, forgot to do this earlier: you can now submit your video (note still PDF with the link in it) on Autolab.		
YOU WILL NEED TO FORM YOUR GROUP ON AUTOLAB AGAIN BEFORE SUBMITTING.		
See the mini project page for the details:		
http://www-student.cse.buffalo.edu/~atri/cse331/fall17/mini-project/index.html		
#pin mini_project		
edit · good note 0	pdated 3 hours ago	by Atri Rudra

HW 7 posted

Homework 7

Due by 11:00am, Friday, November 10, 2017.

Make sure you follow all the homework policies.

All submissions should be done via Autolab.

Question 1 (Programming Assignment) [40 points]

</> Note

This assignment can be solved in either Java, Python or C++ (you should pick the language you are most comfortable with). Please make sure to look at the supporting documentation and files for the language of your choosing.

The Problem

In this problem, we will explore weighted graphs.

We are given a starting node s and an ending node e, for some undirected graph G with n nodes. Further, each node u has its own weight, w_u (0 <= w_u <= 50). The graph

Solutions for HW 6

At the END of the lecture

Mergesort algorithm

Input: a₁, a₂, ..., a_n

Output: Numbers in sorted order

MergeSort(a, n)

If n = 1 return the order a_1

a_L = a₁,..., a_{n/2}

 $a_{R} = a_{n/2+1}, ..., a_{n}$

return MERGE (MergeSort(a_L, n/2), MergeSort(a_R, n/2))

Correctness

Input: a₁, a₂, ..., a_n

Output: Numbers in sorted order

Inductive step follows from correctness of MERGE

Rest of today's agenda

Analyze runtime of mergesort algorithm

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

"Patch up" the solutions to the sub-problems for the final solution

Improvements on a smaller scale

Greedy algorithms: exponential \rightarrow poly time

(Typical) Divide and Conquer: $O(n^2) \rightarrow$ asymptotically smaller running time

Multiplying two numbers

Given two numbers a and b in binary

 $a=(a_{n-1},...,a_0)$ and $b = (b_{n-1},...,b_0)$

Compute c = a x b

Running time of primary school algorithm?