## Lecture 27

CSE 331
Nov 3, 2017

## UB Hacking

## UB Hacking and this weekend

As y'all know UB Hacking is this weekend and it should be great!
One thing to note with regard to 331 is that many of your wonderful TAs are part of UB Hacking organizing team so that means our response over the weekend would be (much) slower than usual.

[^0]
## You need to re-form groups

## Video submission now open on Autolab

Sorry, forgot to do this earlier: you can now submit your video (note still PDF with the link in it) on Autolab.
YOU WILL NEED TO FORM YOUR GROUP ON AUTOLAB AGAIN BEFORE SUBMITTING.

See the mini project page for the details:
http://www-student.cse.buffalo.edu/~atri/cse331/fall17/mini-project/index.html
\#pin
mini_project

## HW 7 posted

## Homework 7

Due by 11:00am, Friday, November 10, 2017.
Make sure you follow all the homework policies.
All submissions should be done via Autolab.

## Question 1 (Programming Assignment) [40 points]

</> Note
This assignment can be solved in either Java, Python or C++ (you should pick the language you are most comfortable with). Please make sure to look at the supporting documentation and files for the language of your choosing.

The Problem
In this problem, we will explore weighted graphs.
We are given a starting node $s$ and an ending node $e$, for some undirected graph $G$ with $n$ nodes. Further, each node $u$ has its own weight, $w_{u}\left(0<=w_{u}<=50\right.$ ). The graph

## Solutions for HW 6

At the END of the lecture

## Mergesort algorithm

Input: $a_{1}, a_{2}, \ldots, a_{n}$
Output: Numbers in sorted order

$$
\begin{aligned}
& \text { MergeSort }(a, n) \\
& \text { If } n=1 \text { return the order } a_{1} \\
& a_{L}=a_{1}, \ldots, a_{n / 2} \\
& a_{R}=a_{n / 2+1}, \ldots, a_{n} \\
& \text { return MERGE (MergeSort } \left.\left(a_{L}, n / 2\right), \operatorname{MergeSort}\left(a_{R}, n / 2\right)\right)
\end{aligned}
$$

## Correctness

Input: $a_{1}, a_{2}, \ldots, a_{n}$
Output: Numbers in sorted order

```
MergeSort(a,n )
    If n=1 return the order }\mp@subsup{a}{1}{
    aL}=\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{n/2}{
    ar}=\mp@subsup{a}{n/2+1,\ldots,}{},\mp@subsup{a}{n}{
    return MERGE 'MergeSort(a, n/2) MergeSort(a}(\mp@subsup{a}{R}{\prime},n/2
```

Inductive step follows from correctness of MERGE

## Rest of today's agenda

Analyze runtime of mergesort algorithm

## Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems
"Patch up" the solutions to the sub-problems for the final solution

## Improvements on a smaller scale

Greedy algorithms: exponential $\rightarrow$ poly time
(Typical) Divide and Conquer: $\mathrm{O}\left(\mathrm{n}^{2}\right) \rightarrow$ asymptotically smaller running time

## Multiplying two numbers

Given two numbers $a$ and $b$ in binary

$$
a=\left(a_{n-1}, . ., a_{0}\right) \text { and } b=\left(b_{n-1}, \ldots, b_{0}\right)
$$

Compute $\mathrm{c}=\mathrm{ax} \mathrm{b}$

## Running time <br> of primary school algorithm?


[^0]:    homework7

