Lecture 28

CSE 331
Nov 6, 2017

Mini project video due next Mon

Video submission now open on Autolab

Sorry, forgot to do this earlier: you can now submit your video (note still PDF with the link in it) on Autolab.
YOU WILL NEED TO FORM YOUR GROUP ON AUTOLAB AGAIN BEFORE SUBMITTING.

See the mini project page for the details:
http://www-student.cse.buffalo.edu/~atri/cse331/fall17/mini-project/index.htm
\#pin
mini_project

Anonymous feedback

331 Feedback

If you have the time, please do fill in this feedback form:
https://docs.google.com/forms/d/e/1FAlpQLSeZIdd6oBwjXeH3YBR6f6cxCVgOph1ialwtj47LGBLT-aSpOw/viewform?usp=sf_link

Filling in the form is optional and is anonymous. But your feedback would be very helpful. If you have limited time, I would encourage you to at least fill in the questions on the initiatives that are new to this Fall.

In a few weeks I will summarize some of the feedback and try and respond to the common comments/questions. \#pin
feedback

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems
"Patch up" the solutions to the sub-problems for the final solution

Improvements on a smaller scale

Greedy algorithms: exponential \rightarrow poly time
(Typical) Divide and Conquer: $\mathrm{O}\left(\mathrm{n}^{2}\right) \rightarrow$ asymptotically smaller running time

Multiplying two numbers

Given two numbers a and b in binary

$$
a=\left(a_{n-1}, . ., a_{0}\right) \text { and } b=\left(b_{n-1}, \ldots, b_{0}\right)
$$

Compute $\mathrm{c}=\mathrm{ax} \mathrm{b}$

Elementary
 school algorithm is

The current algorithm scheme

$$
\begin{aligned}
& T(n) \leq 4 T(n / 2)+c n \\
& T(1) \leq c
\end{aligned}
$$

The key identity

$$
a^{1} b^{0}+a^{0} b^{1}=\left(a^{1}+a^{0}\right)\left(b^{1}+b^{0}\right)-a^{1} b^{1}-a^{0} b^{0}
$$

The final algorithm

Input: $\mathrm{a}=\left(\mathrm{a}_{\mathrm{n}-1}, \ldots, \mathrm{a}_{0}\right)$ and $\mathrm{b}=\left(\mathrm{b}_{\mathrm{n}-1}, \ldots, \mathrm{~b}_{0}\right)$

Mult (a, b)

$$
\begin{aligned}
& \text { If } n=1 \text { return } a_{0} b_{0} \\
& a^{1}=a_{n-1}, \ldots, a_{[n / 2]} \text { and } a^{0}=a_{[n / 2]-1}, \ldots, a_{0}
\end{aligned}
$$

Compute b^{1} and b^{0} from b
$x=a^{1}+a^{0}$ and $y=b^{1}+b^{0}$
Let $p=\operatorname{Mult}(x, y), D=\operatorname{Mult}\left(a^{1}, b^{1}\right), E=\operatorname{Mult}\left(a^{0}, b^{0}\right)$
$F=p-D-E$
return $D \cdot 2^{2[n / 2]}+F \cdot 2^{[n / 2]}+E$

$$
T(1) \leq c
$$

$$
T(n) \leq 3 T(n / 2)+c n
$$

$$
O\left(n^{\log 3}\right)=O\left(n^{1.59}\right)
$$

run time

All green operations are $O(n)$ time
$a \cdot b=a^{1} b^{1} \cdot 2^{2[n / 2]}+\left(\left(a^{1}+a^{0}\right)\left(b^{1}+b^{0}\right)-a^{1} b^{1}-a^{0} b^{0}\right) \cdot 2^{[n / 2]}+a^{0} b^{0}$

