
Lecture	30 		

CSE	331	
Nov	10,	2017	

Mini	project	video	due		Mon	

Homework	8	

Solu@ons	to	Homework	7	

At the END of the lecture

Coun@ng	Inversions	

Input:	n	dis@nct	numbers	a1,a2,…,an	

Inversion:	(i,j)	with	i	<	j	s.t.	ai	>	aj	

Output:	Number	of	inversions	

Divide	and	Conquer	

Divide	up	the	problem	into	at	least	two	sub-problems	

Recursively	solve	the	sub-problems	

�Patch	up�	the	solu@ons	to	the	sub-problems	for	the	final	solu@on	

Solve	all	sub-problems:	Mergesort	

Solve	some	sub-problems:	Mul@plica@on	

Solve	stronger	sub-problems:	Inversions	

Handling	crossing	inversions	

aL aR

1 100 2 4

Why	should	aL	
and	aR	be	
sorted?	

http://www.dovecoteidea.com/

Sort aL and aR recursively!

Mergesort-Count	algorithm	
Input:	a1,	a2,	…,	an	 Output:	Numbers	in	sorted	order+	#inversion	

MergeSortCount(a,	n)	

If	n	=	2	return		(a1	>	a2,	min(a1,a2);	max(a1,a2))	

aL	=	a1,…,	an/2	 aR	=	an/2+1,…,	an	

return	(c+cL+cR,a)	

(cL,	aL)	=	MergeSortCount(aL,	n/2)		

(cR,	aR)	=	MergeSortCount(aR,	n/2)		

(c,	a)	=	MERGE-COUNT(aL,aR)		 Counts	#crossing-inversions+	
MERGE	

O(n)	

T(2)	=	c	

T(n)	=	2T(n/2)	+	cn	

O(n	log	n)	@me	

If	n	=	1	return		(0	,	a1)	

Closest	pairs	of	points	

Input:	n	2-D	points	P	=	{p1,…,pn};	pi=(xi,yi)	

Output:	Points	p	and	q	that	are	closest	

d(pi,pj)	=	((xi-xj)2+(yi-yj)2)1/2	

Group	Talk	@me	

O(n2)	@me	algorithm?	

1-D	problem	in	@me	O(n	log	n)	?	

Sor@ng	to	rescue	in	2-D?	
Pick	pairs	of	points	closest	in	x	co-ordinate	

Pick	pairs	of	points	closest	in	y	co-ordinate	

Choose	the	beder	of	the	two	

A	property	of	Euclidean	distance	

d(pi,pj)	=	((xi-xj)2+(yi-yj)2)1/2	

yi	

xi	 xj	

yj	

The	distance	is	larger	than	the	 	or	 -coord	difference	

Rest	of	Today’s	agenda	

Divide	and	Conquer	based	algorithm	

Dividing	up	P	

First	n/2	points	according	to	the	x-coord	

Q	
R	

Recursively	find	closest	pairs	

δ	=	min	(,)	

Q	
R	

An	aside:	maintain	sorted	lists	

Px	and	Py	are	P	sorted	by	x-coord	and	y-coord	

Qx,	Qy,	Rx,	Ry	can	be	computed	from	Px	and	Py	in	O(n)	@me	

An	easy	case	

δ	=	min	(,)	

Q	
R	>	δ	

All	�crossing�	pairs	have	distance	>	δ	

Life	is	not	so	easy	though	

δ	=	min	(,)	

Q	
R	

Rest	of	Today’s	agenda	

Divide	and	Conquer	based	algorithm	

Euclid	to	the	rescue	(?)	

d(pi,pj)	=	((xi-xj)2+(yi-yj)2)1/2	

yi	

xi	 xj	

yj	

The	distance	is	larger	than	the	 	or	 -coord	difference	

Life	is	not	so	easy	though	

δ	=	min	(,)	

Q	
R	

δ	 δ	

>	δ		

>	δ		

>	δ		

All	we	have	to	do	now	

δ	=	min	(,)	

Q	
R	

δ	 δ	

S	 Figure	if	a	pair	in	S	has	distance	<	δ		

The	algorithm	so	far…	
Input:	n	2-D	points	P	=	{p1,…,pn};	pi=(xi,yi)	

Sort	P	to	get	Px	and	Py	

Q	is	first	half	of	Px	and	R	is	the	rest	

Closest-Pair	(Px,	Py)	

Compute	Qx,	Qy,	Rx	and	Ry	

(q0,q1)	=	Closest-Pair	(Qx,	Qy)	

(r0,r1)	=	Closest-Pair	(Rx,	Ry)	

δ	=	min	(d(q0,q1),	d(r0,r1))	

S	=	points	(x,y)	in	P	s.t.	|x	–	x*|	<	δ		

return	Closest-in-box	(S,	(q0,q1),	(r0,r1))	

If	n	<	4	then	find	closest	point	by	brute-force	

Assume	can	be	done	in	O(n)	

O(n	log	n)	

O(n)	

O(n)	

O(n)	

O(n)	

O(n	log	n)	+	T(n)	

T(<	4)	=	c	

T(n)	=	2T(n/2)	+	cn	

O(n	log	n)	overall	

