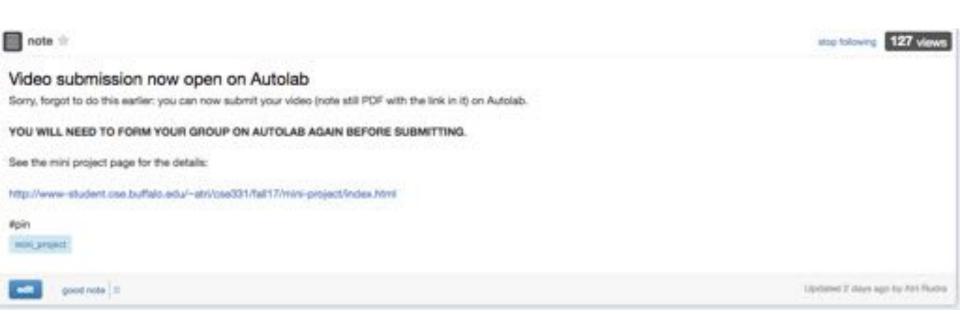
Lecture 30

CSE 331 Nov 10, 2017

Mini project video due Mon



Homework 8

Homework 8

Due by 11:00am, Friday, November 17, 2017.

Make sure you follow all the homework policies.

All submissions should be done via Autolab.

Question 1 (Programming Assignment) [40 points]

Note

This assignment can be solved in either Java, Python or C++ (you should pick the language you are most comfortable with). Please make sure to look at the supporting documentation and files for the language of your choosing.

The Problem

in this problem, we will explore minimum spanning trees.

We are given a undirected, connected graph represented by its adjacency matrix representation. Our goal it to find a minimum spanning tree of that graph

Input

The input file is given as an $n \times n$ matrix where each entry (u, v) represents the weight of the edge between nodes $u \in \{0, 1, ..., n-1\}$ and $v \in \{0, 1, ..., n-1\}$. If there is no edge then the weight is -1. Edge weights will be $\theta \leftrightarrow w \leftarrow 50$.

Solutions to Homework 7

At the END of the lecture

Counting Inversions

Input: n distinct numbers a₁,a₂,...,a_n

Inversion: (i,j) with i < j s.t. $a_i > a_j$

Output: Number of inversions

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

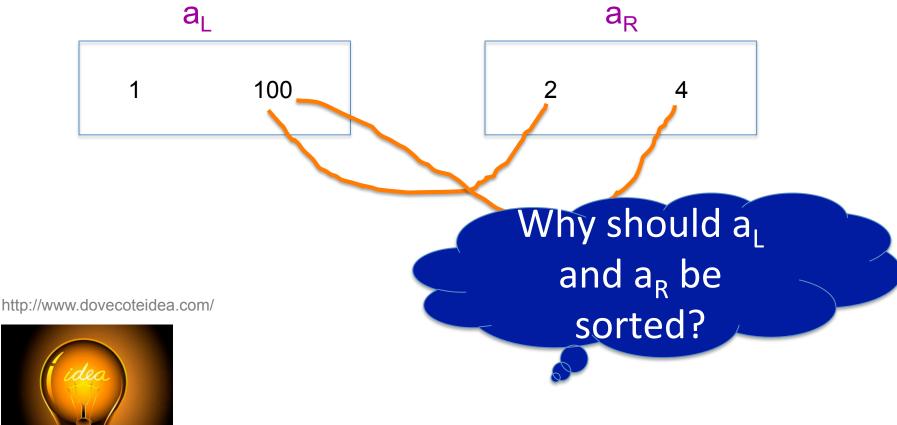
Solve all sub-problems: Mergesort

Solve some sub-problems: Multiplication

Solve stronger sub-problems: Inversions

"Patch up" the solutions to the sub-problems for the final solution

Handling crossing inversions



Sort a_L and a_R recursively!

Mergesort-Count algorithm

Input: a₁, a₂, ..., a_n

Output: Numbers in sorted order+ #inversion

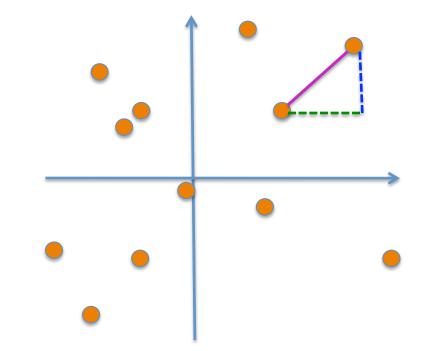
T(2) = cMergeSortCount(a, n) T(n) = 2T(n/2) + cnIf n = 1 return (0, a_1) If n = 2 return (a1 > a2, min(a₁,a₂); max(a₁,a₂)) O(n log n) time $a_{L} = a_{1},..., a_{n/2}$ $a_{R} = a_{n/2+1},..., a_{n}$ $(c_1, a_1) = MergeSortCount(a_1, n/2)$ **O(n)** $(c_R, a_R) = MergeSortCount(a_R, n/2)$ Counts #crossing-inversions+ $(c, a) = MERGE-COUNT(a_1, a_R)$ MERGE return (c+c₁+c_R,a)

Closest pairs of points

Input: n 2-D points $P = \{p_1, ..., p_n\}; p_i = (x_i, y_i)$

 $d(p_i, p_i) = ((x_i - x_i)^2 + (y_i - y_i)^2)^{1/2}$

Output: Points p and q that are closest



Group Talk time

O(n²) time algorithm?

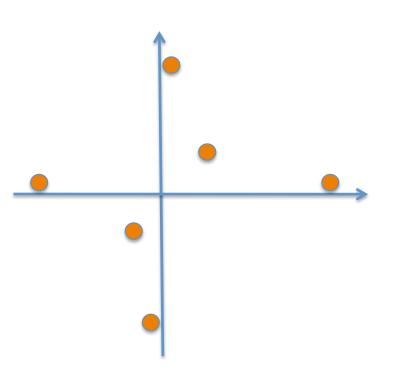
1-D problem in time O(n log n) ?

Sorting to rescue in 2-D?

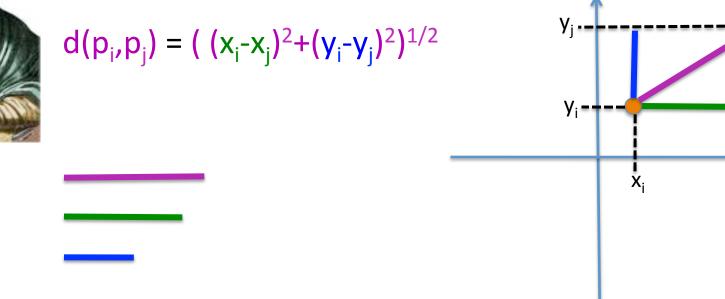
Pick pairs of points closest in x co-ordinate

Pick pairs of points closest in y co-ordinate

Choose the better of the two



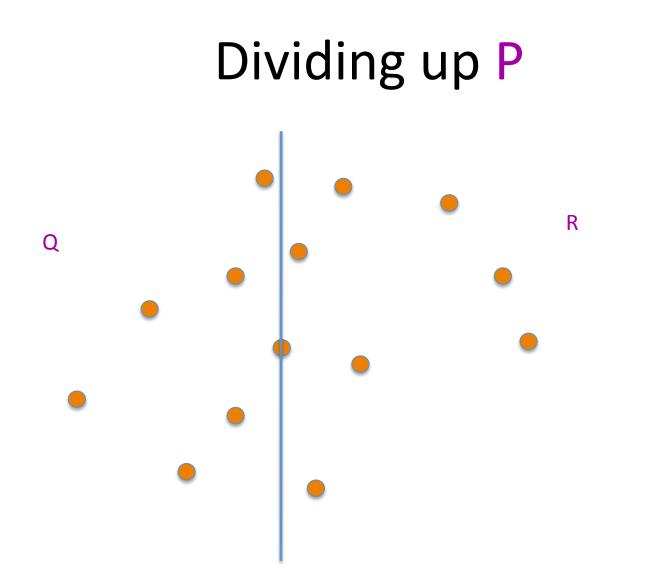
A property of Euclidean distance



The distance is larger than the **x** or **y**-coord difference

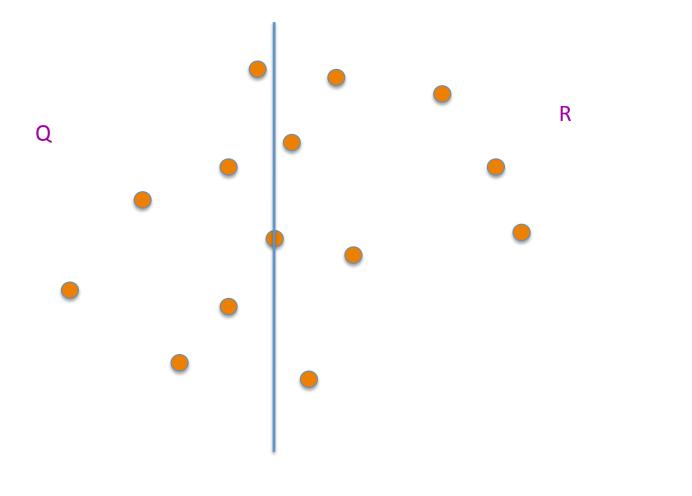
Rest of Today's agenda

Divide and Conquer based algorithm



First n/2 points according to the x-coord

Recursively find closest pairs

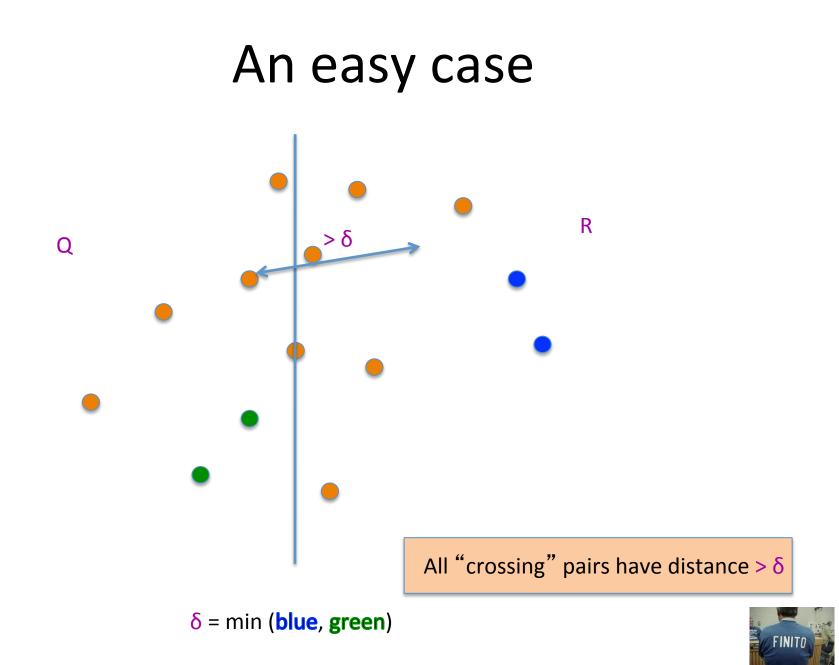


 δ = min (**blue**, green)

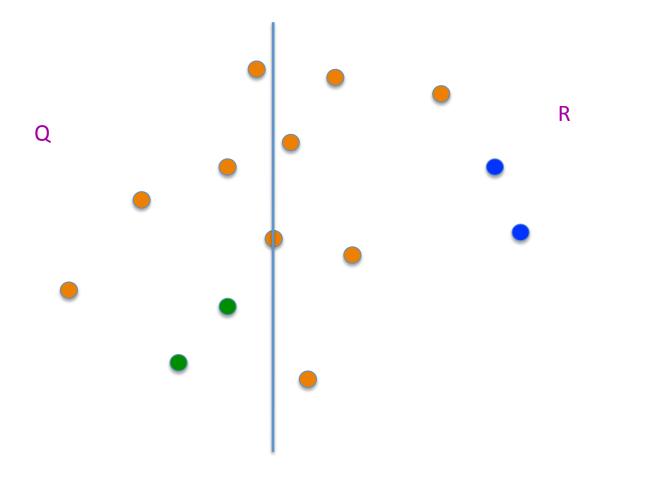
An aside: maintain sorted lists

 P_x and P_y are P sorted by x-coord and y-coord

 Q_x , Q_y , R_x , R_y can be computed from P_x and P_y in O(n) time



Life is not so easy though

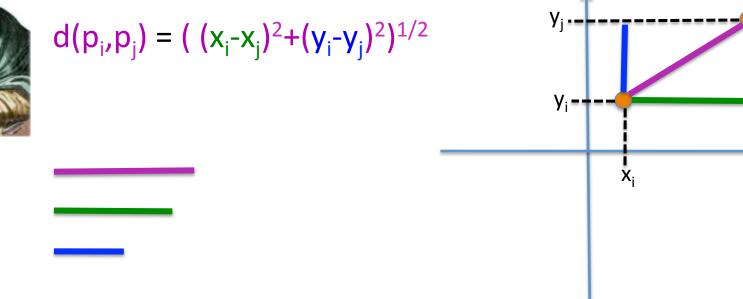


δ = min (**blue**, green)

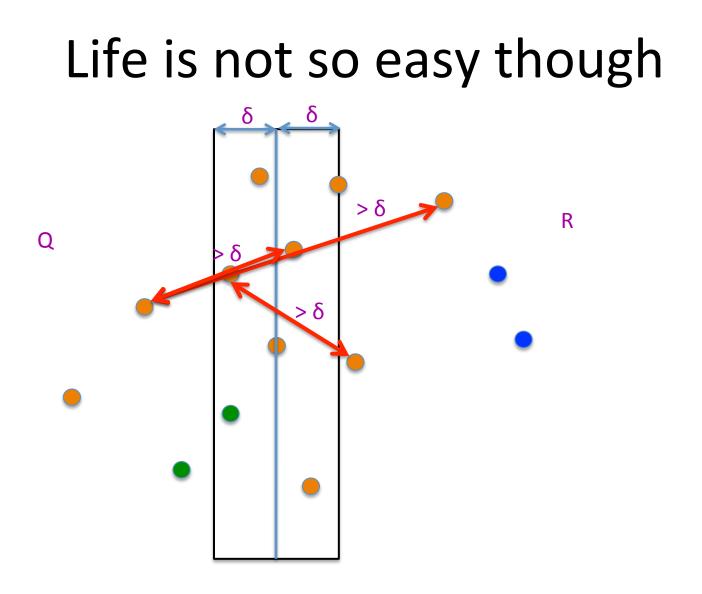
Rest of Today's agenda

Divide and Conquer based algorithm

Euclid to the rescue (?)

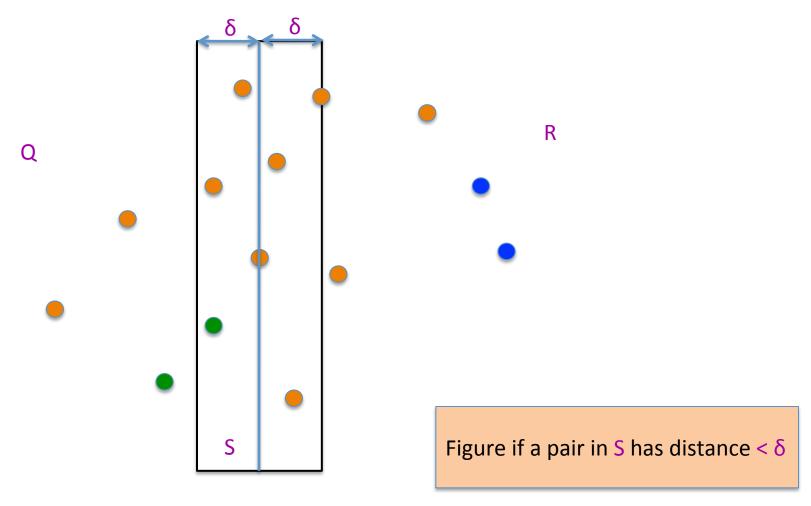


The distance is larger than the **x** or **y**-coord difference



 δ = min (**blue**, green)

All we have to do now



 δ = min (**blue**, green)

The algorithm so far...

Input: n 2-D points $P = \{p_1, ..., p_n\}; p_i = (x_i, y_i)$

 $O(n \log n) + T(n)$

Sort P to get P_x and P_{y} O(n log n) T(< 4) = cClosest-Pair (P_x, P_y) T(n) = 2T(n/2) + cnIf n < 4 then find closest point by brute-force **Q** is first half of P_x and **R** is the rest O(n) Compute Q_x , Q_y , R_x and R_y O(n) O(n log n) overall $(q_0, q_1) = Closest-Pair (Q_x, Q_y)$ $(r_0, r_1) = Closest-Pair (R_x, R_y)$ O(n) $\delta = \min(d(q_0, q_1), d(r_0, r_1))$ O(n) S = points (x,y) in P s.t. $|x - x^*| < \delta$ return Closest-in-box (S, (q_0, q_1) , (r_0, r_1)) Assume can be done in O(n)