
Lecture	31

CSE	331
Nov	13,	2017

Mini	project	video	due		TODAY

Two	changes	in	HWs

Closest	pairs	of	points

Input:	n 2-D	points	P =	{p1,…,pn};	pi=(xi,yi)

Output:	Points	p and	q that	are	closest

d(pi,pj)	=	((xi-xj)2+(yi-yj)2)1/2

Dividing	up	P

First	n/2	points	according	to	the	x-coord

Q
R

Recursively	find	closest	pairs

δ =	min	(,)

Q
R

An	aside:	maintain	sorted	lists

Px and Py are	P sorted	by x-coord	and	y-coord

Qx,	Qy,	Rx,	Ry can	be	computed	from	Px and Py in	O(n)	time

An	easy	case

δ =	min	(,)

Q
R>	δ

All	�crossing� pairs	have	distance	>	δ

Life	is	not	so	easy	though

δ =	min	(,)

Q
R

Euclid	to	the	rescue	(?)

d(pi,pj)	=	((xi-xj)2+(yi-yj)2)1/2

yi

xi xj

yj

The	distance is	larger	than	the	 or	 -coord difference

Life	is	not	so	easy	though

δ =	min	(,)

Q
R

δ δ

> δ

>	δ

>	δ

All	we	have	to	do	now

δ =	min	(,)

Q
R

δ δ

S Figure	if	a	pair	in	S has	distance	< δ

The	algorithm	so	far…
Input:	n 2-D	points	P =	{p1,…,pn};	pi=(xi,yi)

Sort	P to	get	Px and	Py

Q is	first	half	of Px and	R is	the	rest

Closest-Pair	(Px,	Py)

Compute	Qx,	Qy,	Rx and	Ry

(q0,q1)	=	Closest-Pair	(Qx,	Qy)

(r0,r1)	=	Closest-Pair	(Rx,	Ry)

δ =	min	(d(q0,q1),	d(r0,r1))

S =	points	(x,y) in	P s.t.	|x	– x*|	<	δ	

return	Closest-in-box	(S,	(q0,q1),	(r0,r1))

If	n	<	4	then	find	closest	point	by	brute-force

Assume	can	be	done	in	O(n)

O(n log	n)

O(n)

O(n)

O(n)

O(n)

O(n	log	n)	+	T(n)

T(<	4)	=	c

T(n)	=	2T(n/2)	+	cn

O(n	log	n)	overall

Rest	of	today’s	agenda

Implement	Closest-in-box	in	O(n)	time

High	level	view	of	CSE	331
Problem	Statement

Algorithm

Problem	Definition

�Implementation�

Analysis Correctness+Runtime	Analysis

Data	Structures

Three	general	
techniques

Greedy	Algorithms

Natural	algorithms

Reduced	exponential	running	time	to	polynomial

Divide	and	Conquer
Recursive	algorithmic	paradigm

Reduced	large	polynomial	time	to	smaller	polynomial	time

A	new	algorithmic	technique

Dynamic	Programming

Dynamic	programming	vs.	Divide	&	
Conquer

Same	same	because
Both	design	recursive	algorithms

Different	because
Dynamic	programming	is	smarter	about	solving	recursive	sub-problems

End	of	Semester	blues

Monday Tuesday Wednesday Thursday Friday

Project

331		HWExam	study

Party!

Write	up	a	term	paper

Can	only	do	one	thing	at	any	day:	what	is	the	optimal	
schedule	to	obtain	maximum	value?

(30)

(3)

(2)

(5)

(10)

Previous	Greedy	algorithm

Monday Tuesday Wednesday Thursday Friday

Order	by	end	time	and	pick	jobs	greedily

Project (30)

331		HW (3)

Party! (2)

Exam	study (5)

Write	up	a	term	paper (10)

Greedy	value	=	5+2+3=	10

OPT	=	30

Today’s	agenda

Formal	definition	of	the	problem

Start	designing	a	recursive	algorithm	for	the	problem

