Lecture 32

CSE 331 Nov 15, 2017

Comments on Feedback

note 🚖

stop following

3 views

Comments on feedback

Thanks for everyone who have feedback (0640). Over the course of this week, I will address/respond to some of the feedback (both the guantitative ones and the written comments).

In some cases I will be able to incorporate your comments this year. For others, it might not be but I will at least present you my rationale for for why not.

I will start off with responses to how you felt about the class overall. In particular, I pay close attention to the fraction of students who say they are "challenged and unhappy." Last year this was around 17%: higher than what I would like but still something that I can potentially live with. However, this year's number are not good:

Overall your feeling about CSE 331

71 responses

High level view of CSE 331

Greedy Algorithms

Natural algorithms

Reduced exponential running time to polynomial

Divide and Conquer

Recursive algorithmic paradigm

Reduced large polynomial time to smaller polynomial time

A new algorithmic technique

Dynamic Programming

Dynamic programming vs. Divide & Conquer

Same same because

Both design recursive algorithms

Different because

Dynamic programming is smarter about solving recursive sub-problems

End of Semester blues

Previous Greedy algorithm

Today's agenda

Formal definition of the problem

Start designing a recursive algorithm for the problem

Property of OPT

A recursive algorithm

Exponential Running Time

How many distinct OPT values?

A recursive algorithm

M-Compute-Opt(j)

M-Compute-Opt(j) = OPT(j)

If j = 0 then return 0

If M[j] is not null then return M[j]

M[j] = max { v_i + M-Compute-Opt(p(j)), M-Compute-Opt(j-1) }

return M[j]

Run time = O(# recursive calls)

Bounding # recursions

If j = 0 then return 0 O(n) overall If M[j] is not null then return M[j] M[j] = max { v_i + M-Compute-Opt(p(j)), M-Compute-Opt(j-1) } return M[j] Whenever a recursive call is made an M value of assigned

At most n values of M can be assigned

Reading Assignment

Sec 6.1, 6.2 of [KT]

When to use Dynamic Programming

There are polynomially many sub-problems

Richard Bellman

Optimal solution can be computed from solutions to sub-problems

There is an ordering among sub-problem that allows for iterative solution