Lecture 32

CSE 331
Nov 15, 2017

Comments on Feedback

Comments on feedback

Tharks for everyone who have feedback (O64Ch. Over the course of this week, I will address/respond to some of the feedback (both the quantative ones and the written comments).

In some cases I will be able to incorporate your comments this year. For others, i might not be but I will at least present you my rationtie for for wity not.

I will start off with responses to how you felt about the class overal, in particular, I pay close attention to the fraction of students whe say they are "challenged and unhappy" Last year this was around 17% : higher than what I would like but still somsething that I can potentialy live with. However, this year's number are not good:

Overall your feeling about CSE 331
Лr responsen
Ver HapeyChallienged but hapoyCrollenged and mehCrallenged and intappyim berred

High level view of CSE 331

Data Structures

Correctness+Runtime Analysis

Greedy Algorithms

Natural algorithms

Reduced exponential running time to polynomial

Divide and Conquer

Recursive algorithmic paradigm

Reduced large polynomial time to smaller polynomial time

A new algorithmic technique

Dynamic Programming

Dynamic programming vs. Divide \& Conquer

Same same because

Both design recursive algorithms

Different because

Dynamic programming is smarter about solving recursive sub-problems

End of Semester blues

Can only do one thing at any day: what is the optimal schedule to obtain maximum value?

Party!
 (2)

Exam study (5)

Previous Greedy algorithm

Order by end time and pick jobs greedily

Greedy value $=5+2+3=10$

Today's agenda

Formal definition of the problem

Start designing a recursive algorithm for the problem

Property of OPT

A recursive algorithm

Exponential Running Time

How many distinct OPT values?

A recursive algorithm

$$
\begin{aligned}
& \text { M-Compute-Opt }(j) \\
& \text { If } j=0 \text { then return } 0 \\
& \text { If } M[j] \text { is not null then return } M[j] \\
& \left.M[j]=\max \left\{v_{j}+M \text {-Compute-Opt(} p(j)\right), M \text {-Compute-Opt }(j-1)\right\} \\
& \text { return } M[j]
\end{aligned}
$$

M-Compute-Opt(j)
= OPT(j)

$$
\text { Run time }=0 \text { (\# recursive calls) }
$$

Bounding \# recursions

M-Compute-Opt(j)

$$
\begin{aligned}
& \text { If } j=0 \text { then return } 0 \\
& \text { If } M[j] \text { is not null then return } M[j] \\
& \left.\left.M[j]=\max \left\{v_{j}+M \text {-Compute-Opt(} p(j)\right) \text {, M-Compute-Opt(} j-1\right)\right\} \\
& \text { return } M[j]
\end{aligned}
$$

Whenever a recursive call is made an M value of assigned

At most n values of M can be assigned

Reading Assignment

Sec 6.1, 6.2 of [KT]

When to use Dynamic Programming

There are polynomially many sub-problems

Richard Bellman
Optimal solution can be computed from solutions to sub-problems

There is an ordering among sub-problem that allows for iterative solution

