
Lecture	32

CSE	331

Nov	15,	2017



Comments	on	Feedback



High	level	view	of	CSE	331

Problem	Statement

Algorithm

Problem	Definition

�Implementation�

Analysis Correctness+Runtime	Analysis

Data	Structures

Three	general	
techniques



Greedy	Algorithms

Natural	algorithms

Reduced	exponential	running	time	to	polynomial



Divide	and	Conquer

Recursive	algorithmic	paradigm

Reduced	large	polynomial	time	to	smaller	polynomial	time



A	new	algorithmic	technique

Dynamic	Programming



Dynamic	programming	vs.	Divide	&	
Conquer



Same	same	because
Both	design	recursive	algorithms



Different	because
Dynamic	programming	is	smarter	about	solving	recursive	sub-problems



End	of	Semester	blues

Monday Tuesday Wednesday Thursday Friday

Project

331		HWExam	study

Party!

Write	up	a	term	paper

Can	only	do	one	thing	at	any	day:	what	is	the	optimal	
schedule	to	obtain	maximum	value?

(30)

(3)

(2)

(5)

(10)



Previous	Greedy	algorithm

Monday Tuesday Wednesday Thursday Friday

Order	by	end	time	and	pick	jobs	greedily

Project (30)

331		HW (3)

Party! (2)

Exam	study (5)

Write	up	a	term	paper (10)

Greedy	value	=	5+2+3=	10

OPT	=	30



Today’s	agenda

Formal	definition	of	the	problem

Start	designing	a	recursive	algorithm	for	the	problem



Property	of	OPT

OPT(j)		=		max	{ vj +	OPT(	p(j)	),	OPT(j-1) }

j in	OPT(j)
j not	in	OPT(j)

Given	OPT(1),….,	OPT(j-1),	
how	can	one	figure	out	if	j
in	optimal	solution	or	not?





A	recursive	algorithm

Compute-Opt(j)

If	j	=	0	then	return	0

return	max	{ vj +	Compute-Opt(	p(j) ),	Compute-Opt(	j-1 )	}

OPT(j)		=		max	{ vj +	OPT(	p(j)	),	OPT(j-1) }

Proof	of	
correctness	by	
induction	on	jCorrect	for	j=0

=	OPT(	p(j)	) =	OPT(	j-1	)



Exponential	Running	Time

1
2

3

4
5

p(j)	=	j-2

OPT(5)

OPT(3) OPT(4)

OPT(1) OPT(2)

OPT(1) OPT(1)

OPT(1)
OPT(2)

OPT(1)

OPT(2)

OPT(3)
Formal	

proof:	Ex.

Only	5	OPT	
values!





How	many	distinct	OPT	values?



A	recursive	algorithm

M-Compute-Opt(j)

If	j	=	0	then	return	0

M[j]	=	max	{ vj +	M-Compute-Opt(	p(j) ),	M-Compute-Opt(	j-1 )	}

If	M[j]	is	not	null	then	return	M[j]

return	M[j]

M-Compute-Opt(j)	
=	OPT(j)

Run	time	=	O(#	recursive	calls)



Bounding	#	recursions
M-Compute-Opt(j)

If	j	=	0	then	return	0

M[j]	=	max	{ vj +	M-Compute-Opt(	p(j) ),	M-Compute-Opt(	j-1 )	}

If	M[j]	is	not	null	then	return	M[j]

return	M[j]

Whenever	a	recursive	call	is	made	an	
M value	of	assigned

At	most	n values	of	M can	be	assigned

O(n)	overall





Reading	Assignment
Sec	6.1,	6.2	of	[KT]



When	to	use	Dynamic	Programming

There	are	polynomially	many	sub-problems

Optimal	solution	can	be	computed	from	solutions	to	sub-problems

There	is	an	ordering	among	sub-problem	that	allows	for	iterative	solution

Richard	Bellman


