Lecture 37

CSE 331
Dec 1, 2017

Quiz 2 on Monday

Quiz 2 on December 4

A gertle reminder that quiz 2 will be in class on Monday, December 4 from 1-1:10pm. (This is the Monday in last week of class)
The first two questions wis be T/F without justifcation (so like two from Q1 on sample fral- A842) and the third question will be T/F with justification (so like one from Q 2 on sample final- QS42 but with the modification below).

Based on the suggestion in 9806, the T/F with justification question will be of the following format:

- You will be given a correct statement and will be asked to justify it (2 poirts)
- Then you wil be given a variant of the correct statement and will be asked to say whether this stabement if True or False and you will need to prove justificasion for your claim.
* Correct T/F will be worth 1 points and the justification will be worth 3 poirts.
* incorrect T/F will get 0 out of 4 irmespective of the justification.

You can bring in two at $5^{+} \times 11^{+}$review sheets (you can use all four sides)

You can use two letter sized cheatsheets

Last HW up!

Homework 10

Due by 11:00am, Friday, December 8, 2017.
Make sure you follow al the homework policles.
All submissions should be done via Autolab.

Question 1 (Programming Assignment) [40 points]

(b) Note

This asaigrment can be solved in ether Java. Python or Ce+ (you should pick the language you are most combortable aith Pleave make sure to look at the supporting documentafion and fies for the lingouge of your chocsing

The Problem
In thas probleri, you ave glven a directed graph |n adjpoency list representation| $G=(V, E)$ where each edge e $\in E$ has cost C_{g} (which can be regative but G does not have a regative cont cyclej and a vertikx $\in \in V$. Your code wil hive so find the cost of thonsat piehs trom s is every other node in V.

HW 9 solutions

At the END of the lecture

Shortest Path Problem

Input: (Directed) Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and for every edge e has a cost c_{e} (can be <0)
t in V

Output: Shortest path from every s to t

Assume that G
has no negative cycle

When to use Dynamic Programming

There are polynomially many sub-problems

Richard Bellman
Optimal solution can be computed from solutions to sub-problems

There is an ordering among sub-problem that allows for iterative solution

Sub-problems

OPT(u,i) = cost of shortest path from u to t with at most i edges

Today's agenda

Finish Bellman-Ford algorithm

Analyze the run time

The recurrence

OPT(u,i) = shortest path from u to t with at most i edges
$\operatorname{OPT}(u, i)=\min \left\{\operatorname{OPT}(u, i-1), \min _{(u, w) \text { in } E}\left\{c_{u, w}+\operatorname{OPT}(w, i-1)\right\}\right\}$

Some consequences

OPT(u,i) = shortest path from u to t with at most i edges

$$
\operatorname{OPT}(u, i)=\min \left\{O P T(u, i-1), \min _{(u, w) \text { in } E}\left\{c_{u, w}+O P T(w, i-1)\right\}\right\}
$$

```
OPT(u,n-1) is shortest path cost between u and t
```

Group talk time:
How to compute the shortest path between s and t given all OPT(u,i) values

Longest path problem

Given G, does there exist a simple path of length $\mathrm{n}-1$?

Longest vs Shortest Paths

Two sides of the "same" coin

Shortest Path problem

Can be solved by a polynomial time algorithm

Is there a longest path of length $\mathrm{n}-1$?

Given a path can verify in polynomial time if the answer is yes

Poly time algo for longest path?

Clay Mathematics Institute

Deticated to incrwasing and disseminating mathematical knowledge

First Clay Mathematics Institute Millennium Prize Announced
Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman

- Bisch and Siximsitan-Rye Coniecture
- Hodge Conienty mer
-Nimersfitites Lquations
Prasip

P vs NP question

P: problems that can be solved by poly time algorithms

NP: problems that have polynomial time verifiable witness to optimal solution

Proving $P \neq N P$

Pick any one problem in NP and show it cannot be solved in poly time

Pretty much all known proof techniques provably will not work

Proving $P=N P$

Will make cryptography collapse

Compute the encryption key!

Prove that all problems in NP can be solved by polynomial time algorithms

Solving any ONE problem in here in poly time will prove $\mathrm{P}=\mathrm{NP}$!

A book on P vs. NP

High level view of CSE 331

Data Structures

Correctness+Runtime Analysis

If you are curious for more

CSE 429 or 431: Algorithms

CSE 396: Theory of Computation

cmfous lifteh

meets

barmuncune fince

