Lecture 38

CSE 331
Dec 4, 2017

Quiz 2

1:00-1:10pm

Lecture starts at 1:15pm

Final Reminder

note

Incentive for filling in the course evaluations

You must have rocelved an emal (or should be receiving an emal shortiy) about filing the course evaluation forms. I believe this is the link:

Here is my ofter to incentivize you guss filing in the course evaluation form:

- If at least 85% of you fill in the course evaluation form, then I will release one T / F (without justication) question on the final exam (which comesponds to Q1 (a): see e842 for the format).
- If at least 95% of you fill in the course evaluation form, then I will release one T / F (without justication) question and one T / F (with justification) question (oomesponding to Q1(a) and Q2(a) mespectively. see QB42 for the format).

Of course if < 85% of you fal in the course eval form, then no question gets released. I will post weelidy updates on the response rate.
(Also to clarify: the \% is oney for students whe are still registered in the course and have not resigned, which is an even 200)

Review sessions/extra OH

Review sessions/extra OH

The final exarn week will have one (or two- depending on the response and room avalability) review sessionis) and Office hours hosted by the The. The review session(s) will be during Mon-Wed.

Copies of HW solutions can also be piciked at the office hours.
Please choose al time slots that work for you (chocse a slot even if it works only for part of the time).
I will use the votes on Wed Apm to pick the final slots.

```
Mon, Dec 11, 10-11am
MMon, Dec 11, 11am-12pm
Man, Dec 11, 12-1pm
\squareMon, Dec 11, 1-2pm
\squareMon, Dec 11, 2-3pm
\squareMon, Dec 11,3-4pm
Mon, Dec 11, 4-5pm
```


Shortest Path Problem

Input: (Directed) Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and for every edge e has a cost c_{e} (can be <0)
t in V

Output: Shortest path from every s to t

Assume that G
has no negative cycle

Longest path problem

Given G, does there exist a simple path of length $\mathrm{n}-1$?

Longest vs Shortest Paths

Two sides of the "same" coin

Shortest Path problem

Can be solved by a polynomial time algorithm

Is there a longest path of length $\mathrm{n}-1$?

Given a path can verify in polynomial time if the answer is yes

Poly time algo for longest path?

Clay Mathematics Institute

Deticated to incrwasing and disseminating mathematical knowledge

First Clay Mathematics Institute Millennium Prize Announced
Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman

- Bisch and Siximsitan-Rye Coniecture
- Hodge Conienty mer
-Nimersfitites Lquations
Prasip

P vs NP question

P: problems that can be solved by poly time algorithms

NP: problems that have polynomial time verifiable witness to optimal solution

Proving $P \neq N P$

Pick any one problem in NP and show it cannot be solved in poly time

Pretty much all known proof techniques provably will not work

Proving $P=N P$

Will make cryptography collapse

Compute the encryption key!

Prove that all problems in NP can be solved by polynomial time algorithms

Solving any ONE problem in here in poly time will prove $\mathrm{P}=\mathrm{NP}$!

A book on P vs. NP

High level view of CSE 331

Data Structures

Correctness+Runtime Analysis

If you are curious for more

CSE 429 or 431: Algorithms

CSE 396: Theory of Computation

cmfous lifteh

meets

barmuncune fince

Now relax...

Randomized algorithms

What is different?

Algorithms can toss coins and make decisions

A Representative Problem

Hashing

http://calculator.mathcaptain.com/coin-toss-probability-calculator.html
Further Reading
Chapter 13 of the textbook

Approximation algorithms

What is different?

Algorithms can output a solution that is say 50% as good as the optimal

A Representative Problem
Vertex Cover

Further Reading
Chapter 12 of the textbook

Online algorithms

What is different?

Algorithms have to make decisions before they see all the input

A Representative Problem
Secretary Problem
Further Reading

Data streaming algorithms

What is different?
https://www.flickr.com/photos/midom/2134991985/
One pass on the input with severely limited memory

A Representative Problem

Compute the top-10 source IP addresses
Further Reading

Distributed algorithms

What is different?

Input is distributed over a network

A Representative Problem
Consensus
Further Reading

Beyond-worst case analysis

What is different?

Analyze algorithms in a more instance specific way

A Representative Problem
Intersect two sorted sets
Further Reading

http://theory.stanford.edu/~tim/f14/f14.html

Algorithms for Data Science

What is different?

Algorithms for non-discrete inputs

A Representative Problem

Compute Eigenvalues
Further Reading

Johnson Lindenstrauss Lemma

http://www.scipy-lectures.org/_images/pca_3d_axis.jpg

The simplest non-trivial join query

Intersection of R and S

S

Assume R and S are sorted

Let us concentrate on comparison based algorithms

Assume $|R|=|S|=N$

Not all inputs are created equal

We need a faster/adaptive algorithm

The MERGE algorithm works

An assumption

Output of the join is empty

MERGE is (near) instance optimal

Benchmark: Minimum number of comparisons (C) to "certify" output

Need a comparison to rule the value out

Each value involved with ≤ 2 comparisons
Once the pointer moves the value is never seen again

Each move takes log N comparisons

Coding Theory

Communicating with my 3 year old

"Code" C
"Kiran English"
$\mathrm{C}(\mathrm{x})$ is a "codeword"

The setup

Mapping C

Error-correcting code or just code
Encoding: $x \rightarrow C(x)$
Decoding: $y \rightarrow x$
$C(x)$ is a codeword

Different Channels and Codes

- Internet
- Checksum used in mult layers of TCP/IP stack
- Cell phones
- Satellite broadcast
- TV
- Deep space telecommunications
- Mars Rover

"Unusual" Channels

- Data Storage
- CDs and DVDs
- RAID
- ECC memory

- Paper bar codes
- UPS (MaxiCode)

Codes are all around us

Redundancy vs. Error-correction

- Repetition code: Repeat every bit say 100 times
- Good error correcting properties
- Too much redundancy
- Parity code: Add a parity bit

111001

- Minimum amount of redundancy
- Bad error correcting properties

100001

- Two errors go completely undetected
- Neither of these codes are satisfactory

Two main challenges in coding theory

- Problem with parity example
- Messages mapped to codewords which do not differ in many places
- Need to pick a lot of codewords that differ a lot from each other
- Efficient decoding
- Naive algorithm: check received word with all codewords

The fundamental tradeoff

- Correct as many errors as possible with as little redundancy as possible

Can one achieve the "optimal" tradeoff with efficient encoding and decoding?

Interested in more?

CSE 545, Spring 2019

Whatever your impression of the 331

Hopefully it was fun!

Thanks!

Except of course, HW 10, presentations and the final exam

