
SOLUTIONS TO CSE 331 SAMPLE MID-TERM-II

Please do not read anything into the kind of problems in the sample mid-term. Overall, the
mid-term will be harder than this sample mid-term (but still easier than the homeworks). The
main purpose of this sample mid-term was to give you an idea of the format of questions. Also
you can get an idea of how much detail is expected from your answers in the exam from the
solutions below.

2. (20+25 = 45 points) Given an array A of n integers, consider the the following algorithm
that computes a related value (and an intermediate matrix B):

For every i = 1, . . . ,n

For every j = i , . . . ,n

Assign B [i , j ] to be the maximum value among A[i ], A[i +1], . . . , A[ j ].

Output the minimum value among all values in B [i , j ] (over all i = 1, . . . ,n and j =
i , . . . ,n).

(a) Prove that the algorithm runs in O(n3) time.

We are given an algorithm with two nested loops and some operations to perform
for each iteration. The outside (i ) loop will perform n iterations, which is O(n). For
each of those iterations, the inside ( j ) loop will perform n − i iterations, which is
also O(n). So regardless of what is going on inside the inside loop, this algorithm
performs O(n2) iterations. Visually, this should make sense, because we are filling
in the upper triangle of the B matrix with values that we compute, and there are
O(n2) entries in the upper triangle. For each of these iterations, though, we find the
maximum of j − i +1 (or O(n)) terms from the A array. So we have O(n2) iterations,
each of which require O(n) comparisons (which can execute in O(1) time). Thus, the
entire algorithm will execute in O(n3) time.

(b) Present another algorithm that solves the same problem but runs in O(n2) time.
(Briefly justify the running time and correctness of your algorithm.)

We can develop a more efficient algorithm by isolating and removing any unnec-
essary or duplicated operations from the given algorithm. To see where these ex-
ist, consider that for each iteration, we go back to the A array and found out the
maximum of a bunch of entries, ignoring the fact that in the previous iterations,
we’ve found the maximum of many of those same terms together already. Notice
that B [i , i ] = A[i ] and for any (i , j ) element of B for j > i , the entry in B [i , j ] equals
max(B [i , j −1], A[ j ]). This suggests the following algorithm:

Although the structure of the algorithm is similar to the previous one, we have only
one comparison per iteration, instead of the earlier O(n) comparisons. So the time
complexity function for this algorithm just depends on the number of iterations,
which is O(n2). The running time is thus O(n2).
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for i = 1, 2, ..., n −1 do
B [i , i ] = A[i ]
for j = i +1, i +2, ..., n do

B [i , j ] = max(B [i , j −1], A[ j ])
end for

end for

Alternate Solution. The algorithm above actually computes B [i , j ] for every 1 ≤
i ≤ n and 1 ≤ j ≤ n in time O(n2). Of course once we have computed all the B [i , j ]
one can compute the minimum value by going over all the n2 entries in O(n2) time.
However, we claim that

min
1≤i , j≤n

B [i , j ] = min
1≤i≤n

A[i ].

This is true because B [i , j ] = A[k] for some 1 ≤ k ≤ n. Further, B [i , i ] = A[i ]. These
two fact imply the above equality. Thus one can compute the minimum B value by
simply outputting the minimum value in the array A which one can do in O(n) time,
which is of course also O(n2) time.

3. (15 points) Let d ≥ 1 be an integer. Then a d-dimension hypercube is a graph whose vertex
set is {0,1}d . (Note that this implies that n = 2d .) Further, a pair (u, v) is an edge if and
only if the binary representations of u and v differ in exactly one of the d positions.

(a) (20 points) Figure out a function f (d) such that the d-dimension hypercube has a
cycle of length at least f (d). (You will get more points the larger the value f (d) is.)
Briefly justify your answer.

(Hint: You can assume the existence of the Gray code, which for any ` ≥ 1, outputs
an ordering of binary vector of length ` such that one can go from one vector to the
next one in the ordering by flipping exactly one bit.)

We claim that f (d) = 2d , i.e. there exists a cycle that contains all the vertices in the
graph. (Such a cycle is called a Hamiltonian cycle.) Let the Gray code ordering of
the n vertices be v1, . . . , vn . We claim that v1, v2, . . . , vn , v1 is a cycle. To show this we
must argue that (vi , vi+1) and (vn , v1) are all edges. This is true by the definition of
the Gray code and the hypercube. For 1 ≤ i ≤ n −1, vi+1 can be obtained from vi by
flipping one bit, i.e. vi+1 and vi differ in exactly one of the d positions and hence,
(vi , vi+1) is an edge. A similar argument shows that (vn , v1) is an edge.

(b) (Bonus) (No points) A cut of a graph G = (V ,E) is a partition of V into two sets S and
S̄ = V \ S. The value of a cut (S, S̄) (denoted by E(S, S̄)) is the total number of edges
such that one end point is in S and the other is in S̄, i.e. it is the number of edges
“crossing" the cut. The maxcut value of G is

max
S⊆V

E(S, S̄).

Figure out a function g (d) such that the maxcut value of a d-dimension hypercube
is at least g (d). Justify your answer. (To receive any credit for this problem, the func-
tion g (d) has to depend non-trivially on d– at the very least it has to be asymptoti-
cally bigger than d . An answer without any justification will not receive any credit.)
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If you thought about this problem, contact us with your solution and we will be
happy to talk about it.
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