Lecture 12

CSE 331 Sep 24, 2018

Mini Project group due TODAY!

You and 331

https://buffalonews.com/2018/09/23/twitter-turns-air-josh-allen-hurdle-photo-from-bills-vikings-game-into-meme/

Connectivity Problem

Input: Graph G = (V,E) and s in V

Output: All t connected to s in G

Breadth First Search (BFS)

BFS via examples

In which we derive the breadth first search (BFS) algorithm via a sequence of examples.

Expected background

These notes assume that you are familiar with the following:

- · Graphs and their representation. In particular,
 - Notion of connectivity of nodes and connected components of graphs
 - Adjacency list representation of graphs
 - Notation;
 - G = (V, E)
 - n = |V| and m = |E|
 - · CC(s) denotes the connected component of s
- · Trees and their basic properties

The problem

In these notes we will solve the following problem:

Connectivity Problem

Input: Graph G = (V,E) and s in V

Output: All t connected to s in G

Boolean array R such that R[t] = true iff t is connected to s

Example 0: Know nothing about E

R[s] = T and R[u] = F for every u != s

Example 1

R[s] = T and R[u] = F for every u != s

$$R[s] = R[a] = R[b] = R[c] = R[d] = T$$

Example 1: G is a "star"

Current algo:

Re-stating the algo

Re-written algo:

Current algo: R[s] = T and R[u] = F for every u != s For every (s, u) in E R[u] = T

```
R[s] = T and R[u] = F for every u != s
L_0 = \{s\}
L_1 = null
For every u in L<sub>0</sub>
    For every (u,w) in E
       Add w to L<sub>1</sub>
For every w in L_1
    R[w] = T
```


Example 2 algo

R[s] = T and R[u] = F for every u != s

 $L_0 = \{s\}$

 L_1 , L_2 = null

For every u in L₀ For every (u,w) in E

Add w to L_1

For every w in L₁ R[w] = T

For every u in L₁ For every (u,w) in E Add w to L₂ For every w in L₂ R[w] = T

This is an unwieldy algo

Identify two inefficiencies: one is trivial and another is a bit more subtle R[s] = T and R[u] = F for every u != s

 $L_0 = \{s\}$

 L_1 , L_2 = null

For every u in L₀ For every (u,w) in E Add w to L₁

For every w in L₁ R[w] = T

For every u in L₁ For every (u,w) in E Add w to L₂ For every w in L₂ R[w] = T

The trivial inefficiency (ala 115)

R[s] = T and R[u] = F for every u != s

 $L_0 = \{s\}$

 L_1 , L_2 = null

For every u in L₀

For every (u,w) in E

Add w to L_1

For every w in L₁ R[w] = T

For every u in L₁ For every (u,w) in E Add w to L₂ For every w in L₂ R[w] = T

This thing called nested loops

R[s] = T and R[u] = F for every u != s $L_0 = \{s\}$ L_1 , L_2 = null For every u in L₀ For every (u,w) in E Add w to L₁ For every w in L_1 R[w] = TFor every u in L_1 For every (u,w) in E Add w to L₂ For every w in L_2 R[w] = T

R[s] = T and R[u] = F for every u != si = 0 $L[i] = {s}$ While i < 2L[i+1] = nullFor every u in L[i] For every (u,w) in E Add w to L[i+1] R[w] = Ti++

What other extra work is going on?

R [blue nodes] is set multiple times R[s] = T and R[u] = F for every u != s i = 0 L[i] = {s}

While i < 2

L[i+1] = null For every u in L[i] For every (u,w) in E Add w to L[i+1] R[w] = T j++

Algo for trees

R[s] = T and R[u] = F for every u != s i = 0 L[i] = {s} While i < 2 L[i+1] = nullFor every u in L[i] For every (u,w) in E Add w to L[i+1] R[w] = Tj++

Algo for tree + one edge

How would you change the loop condition?

R[s] = T and R[u] = F for every u != s i = 0

 $L[i] = {s}$

While i < d

L[i+1] = null For every u in L[i] For every (u,w) in E Add w to L[i+1] R[w] = T j++

How about this?

R[s] = T and R[u] = F for every u != s i = 0 L[i] = {s}

While thread is an u s.t. R[u] == F

L[i+1] = null For every u in L[i] For every (u,w) in E Add w to L[i+1] R[w] = T j++

OK, fine-- how about this?

A simple fix

R[s] = T and R[u] = F for every u != s i = 0 $L[i] = {s}$ While L[i] != null L[i+1] = nullFor every u in L[i] For every (u,w) in E If R[w] == F Add w to L[i+1] R[w] = Tj++

Orange node gets added to L[2]

This would have worked too

Example where this fails?

R[s] = T and R[u] = F for every u != s i = 0 $L[i] = {s}$ While L[i] != null L[i+1] = nullFor every u in L[i] For every (u,w) in E If R[w] == F Add w to L[i+1] R[w] = T

_j++

Questions?

There are notes

The Algorithms

Below we collect the algorithms that we develop via examples:

- BFS
- Interval Scheduling

Copyright © 2018, Atri Rudra. Built with Bootstrap, p5 and bigfoot.

Breadth First Search (BFS): Algo Idea

Build layers of vertices connected to s

 $L_0 = \{s\}$

Assume L₀,..,L_i have been constructed

 L_{j+1} set of vertices not chosen yet but are connected to L_j

Stop when new layer is empty

BFS Tree

Rest of today's agenda

Every edge in is between consecutive layers

Computing Connected component