Lecture 12

CSE 331
Sep 24, 2018

Mini Project group due TODAY!

Clarifications on mini project

Two comments as you finalize your mini project choices:

* You are responsible for forming a group of size EXACTLY 3. I will not be forming groups from students who could not find a group at the end. If you have not formed a group by Monday, then you get a zero on the mini project.
* Once you submit a case study and it is not flagged as not having a contlict, your choice is considered to be final.
- I'm open to considering requests for change but you need a good reason and this has to be done by email. Le. do not fill in the form again- if you do, I will simply delete your later choices.

```
min\groject
```


You and 331

https://buffalonews.com/2018/09/23/twitter-turns-air-josh-allen-hurdle-photo-from-bills-vikings-game-into-meme/

Connectivity Problem

Input: Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and s in V

Output: All t connected to s in G

Breadth First Search (BFS)

BFS via examples

In which we derive the breadth first search (BFS) algoritim via a sequence of examples.

Expected background
These notes asoume that you are farnilar with the following
- Graphs and ther sepvesertation in partioulas;
- Notion of connectivity of nodes and copnnected ecmporients of graphat
- Adjacency list represertarion of graphs
- Notation
$. G=(V, E)$
* $n=|V|$ and $m=|E|$
- CC(s) denotes the connected componert of II
- Trees and their batic propertes

The problem

In these notes ap will solve thes follgwing problem:

Connectivity Problem

Input: Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and s in V

Output: All t connected to s in G

$$
\text { Boolean array } R \text { such that } R[t]=\text { true iff } t \text { is connected to } s
$$

Example 0: Know nothing about E

$R[s]=T$ and $R[u]=F$ for every $u!=s$

Example 1

$$
R[s]=T \text { and } R[u]=F \text { for every } u!=s
$$

$R[s]=R[a]=R[b]=R[c]=R[d]=T$

Example 1: G is a "star"

Current algo:

$R[s]=T$ and $R[u]=F$ for every $u!=s$
For every (s, u) in E

$$
\mathrm{R}[\mathrm{u}]=\mathrm{T}
$$

Example 2'

Re-stating the algo

Re-written algo:

Current algo:

$$
\begin{aligned}
& \mathrm{R}[\mathrm{~s}]=\mathrm{T} \text { and } \mathrm{R}[\mathrm{u}]=\mathrm{F} \text { for every } \mathrm{u}!=\mathrm{s} \\
& \mathrm{~L}_{0}=\{\mathrm{s}\} \\
& \mathrm{L}_{1}=\text { null } \\
& \text { For every } u \text { in } L_{0}
\end{aligned}
$$

For every (u, w) in E Add w to L_{1}

For every w in L_{1}

$$
R[w]=T
$$

Example 2

Example 2 algo

$$
\begin{aligned}
& \mathrm{R}[\mathrm{~s}]=\mathrm{T} \text { and } \mathrm{R}[\mathrm{u}]=\mathrm{F} \text { for every } \mathrm{u}!=\mathrm{s} \\
& \mathrm{~L}_{0}=\{\mathrm{s}\} \\
& L_{1}, L_{2}=\text { null }
\end{aligned}
$$

For every u in L_{0}
For every (u,w) in E Add w to L_{1}

For every w in L_{1} $R[w]=T$

For every u in L_{1}
For every (u,w) in E
Add w to L_{2}
For every win L_{2}

$$
R[w]=T
$$

This is an unwieldy algo

$$
\begin{aligned}
& R[s]=T \text { and } R[u]=F \text { for every } u!=s \\
& L_{0}=\{s\} \\
& L_{1}, L_{2}=\text { null }
\end{aligned}
$$

For every u in L_{0}
For every (u,w) in E Add w to L_{1}

For every w in L_{1}

$$
R[w]=T
$$

For every u in L_{1}
For every (u,w) in E

$$
\text { Add w to } L_{2}
$$

For every w in L_{2}

$$
R[w]=T
$$

The trivial inefficiency (ala 115)

$R[s]=T$ and $R[u]=F$ for every $u!=s$
$L_{0}=\{s\}$
$L_{1}, L_{2}=$ null

The highlighted pieces of code can be combined

For every u in L_{0}
For every (u,w) in E
Add w to L_{1}

For every win L_{1}

$$
R[w]=T
$$

For every u in L_{1}
For every (u, w) in E
Add w to L_{2}
For every w in L_{2}

$$
R[w]=T
$$

This thing called nested loops

$R[s]=T$ and $R[u]=F$ for every $u!=s$
$\mathrm{L}_{0}=\{\mathrm{s}\}$
$L_{1}, L_{2}=$ null
For every u in L_{0}
For every (u,w) in E
Add w to L_{1}
For every win L_{1}

$$
R[w]=T
$$

For every u in L_{1}
For every (u, w) in E
Add w to L_{2}
For every w in L_{2}

$$
R[w]=T
$$

$$
\begin{aligned}
& R[s]=T \text { and } R[u]=F \text { for every } u!=s \\
& i=0 \\
& L[i]=\{s\}
\end{aligned}
$$

While $\mathrm{i}<2$

$$
\begin{aligned}
& L[i+1]=\text { null } \\
& \text { For every } u \text { in } L[i] \\
& \text { For every }(u, w) \text { in } E \\
& \text { Add w to } L[i+1] \\
& \text { i++ } \quad R[w]=T
\end{aligned}
$$

What other extra work is going on?

R [blue nodes] is set multiple times

$$
\begin{aligned}
& R[s]=T \text { and } R[u]=F \text { for every } u!=s \\
& i=0 \\
& L[i]=\{s\}
\end{aligned}
$$

While $\mathrm{i}<2$

$$
\begin{aligned}
& L[i+1]=\text { null } \\
& \text { For every u in } L[i] \\
& \text { For every }(u, w) \text { in } E \\
& \text { Add w to } L[i+1] \\
& \quad R[w]=T
\end{aligned}
$$

Example 3

Algo for trees

$$
R[s]=T \text { and } R[u]=F \text { for every } u!=s
$$

$i=0$
$\mathrm{L}[\mathrm{i}]=\{\mathrm{s}\}$
While $\mathrm{i}<\square$
L[i+1] = null

For every u in L[i]
For every (u, w) in E
Add w to L[i+1]
$R[w]=T$
i++

Example 4

Algo for tree + one edge

$$
\begin{aligned}
& R[s]=T \text { and } R[u]=F \text { for every } u!=s \\
& i=0 \\
& L[i]=\{s\}
\end{aligned}
$$

While $\mathrm{i}<\mathrm{d}$

$$
\begin{aligned}
& L[i+1]=\text { null } \\
& \text { For every } u \text { in } L[i] \\
& \text { For every }(u, w) \text { in } E \\
& \text { Add w to } L[i+1] \\
& \text { i++ } \quad R[w]=T
\end{aligned}
$$

How about this?

(a) (b)
$\mathrm{R}[\mathrm{s}]=\mathrm{T}$ and $\mathrm{R}[\mathrm{u}]=\mathrm{F}$ for every u != s
$i=0$
$\mathrm{L}[\mathrm{i}]=\{\mathrm{s}\}$
While the de is an us.t. $R[u]==F$

$$
\begin{aligned}
& L[i+1]=\text { null } \\
& \text { For every } u \text { in } L[i] \\
& \text { For every }(u, w) \text { in } E \\
& \text { Add w to } L[i+1] \\
& \text { R[w] = T }
\end{aligned}
$$

OK, fine-- how about this?

A simple fix

$$
\begin{aligned}
& R[s]=T \text { and } R[u]=F \text { for every } u!=s \\
& i=0 \\
& L[i]=\{s\}
\end{aligned}
$$

While L[i] != null

$$
\mathrm{L}[i+1]=\text { null }
$$

For every u in L[i]
For every (u, w) in E
If $R[w]==F$
Add w to L[i+1]

$$
\mathrm{R}[\mathrm{w}]=\mathrm{T}
$$

i++

Example 4 (again)

Orange node gets added to L[2]

This would have worked too

Example where this fails?

$$
\begin{aligned}
& R[s]=T \text { and } R[u]=F \text { for every } u!=s \\
& i=0 \\
& L[i]=\{s\}
\end{aligned}
$$

While L[i] != null

$$
\mathrm{L}[i+1]=\text { null }
$$

For every u in L[i]
For every (u, w) in E
If $R[w]==F$
Add w to L[i+1]
$R[w]=T$
i++

Questions?

There are notes

CSE 331 Support Pages -

Background Materis
Common Mistakes
Algorthms via Examples
Support Page Home

ms via Examples
 iges that develop algorithms via a sequence of examples.

The Algorithms

Below we collect the algorthms that we develop via examples:

- BFS
- interval Scheduing

Copyright O 2018, Atri Rudra. Built with Bootstrap, p5 and bigfoot.

Breadth First Search (BFS): Algo Idea

Build layers of vertices connected to s

$\mathrm{L}_{0}=\{\mathrm{s}\}$

Assume $\mathrm{L}_{0}, . ., \mathrm{L}_{\mathrm{j}}$ have been constructed
$\mathrm{L}_{\mathrm{j}+1}$ set of vertices not chosen yet but are connected to L_{j}

Stop when new layer is empty

BFS Tree

BFS naturally defines a tree rooted at s

L_{j} forms the j th "level" in the tree
u in L_{j+1} is child of v in L_{j} from which it was "discovered'

Rest of today's agenda

Every edge in is between consecutive layers

Computing Connected component

