Lecture 14

CSE 331 Sep 28, 2018

HW 4 is now posted

Homework 4

Due by 11:59pm, Thursday, October 4, 2018.

Make sure you follow all the homework policies.

All submissions should be done via Autolab.

Sample Problem

The Problem This problem is just to get you thinking about graphs and get more practice with proofs. A forest with c components is a graph that is the union of c disjoint trees. The figure below shows for an example with c = 3 and x = 13 with the three components colored blue, read and yellow).

Note: Bonus points for the fastest submissions on Q1. See WARNING though.

HW 3 solutions at end of lec

Today's agenda

Run-time analysis of BFS (DFS)

Stacks and Queues

Last in First out

First in First out

But first...

How do we represent graphs?

Questions?

$2 \cdot \# \text{ edges} = \text{sum of } \# \text{ neighbors}$ $2m = \sum_{u \text{ in } V} n_u$

Give 2 pennies to each edge

Total # of pennies = 2m

Each edges gives one penny to its end points

of pennies u receives = n_u

Breadth First Search (BFS)

Build layers of vertices connected to s

 $L_0 = \{s\}$

Assume L₀,..,L_j have been constructed

Stop when new layer is empty

Use linked lists

Use CC[v] array

Rest of Today's agenda

Space complexity of Adjacency list representation

Quick run time analysis for BFS

Quick run time analysis for DFS (and Queue version of BFS)

Helping you schedule your activities for the day