Lecture 17

CSE 331 Oct 5, 2018

Homework 5

Homework 5

Due by 11:59pm, Thursday, October 11, 2018.

Make sure you follow all the homework policies.

All submissions should be done via Autolab.

Sample Problem

The Problem

Extend the topological ordering algorithm we saw in class so that, given an input directed graph G, it outputs one of two things: (a) a topological ordering, thus establishing that G is a DAG, or (b) a cycle in G, thus establishing that G is not a DAG.

The running time of your algorithm should be O(m + n) for a directed graph with n nodes and m edges.

Click here for the Solution

Solutions to HW 4

End of the lecture

Quiz 1 on Monday

Done with mid-term material

note 🕆	stop following	83 views
Linear time topological ordering		
As I mentioned in the lecture today, one can actually implement TopOrd in $O(m + n)$ time ins in the lecture today. The details are in the book or you can watch this video from last year.	stead of the $O(n^2)$ analysis t	hat we did
BTW this is where the mid-term material ends: so all of Chapters 1, 2 and 3 in the textbook (ev #pin lectures	xcept Chapter 1.2).	
edit good note 0	Updated 1 day ago	by Atri Rudra

Mid-term material

Everything we have covered so far (essentially Chaps 1-3 except Sec 1.2)

See piazza post on how to prepare for the mid-terms

Main Steps in Algorithm Design

Where do graphs fit in?

Rest of the course

Greedy algorithms

Build the final solution piece by piece

Being short sighted on each piece

Never undo a decision

End of Semester blues

The optimal solution

Arrange tasks in some order and iteratively pick nonoverlapping tasks

Interval Scheduling Problem

{ s(i), ..., f(i)-1 }

Input: n intervals [s(i), f(i)) for $1 \le i \le n$

Output: A *schedule* **S** of the **n** intervals

No two intervals in S conflict

S is maximized

Algorithm with examples

Interval Scheduling via examples

In which we derive an algorithm that solves the Interval Scheduling problem via a sequence of examples.

The problem

In these notes we will solve the following problem:

Interval Scheduling Problem

Exposes An input of *n* intervals (s(i), f(i)), or in other words, $(s(i), \dots, f(i) - 1)$ for $1 \le i \le n$ where *i* represents the intervals, s(i) represents the start time, and f(i) represents the finish time.

Gutput: A schedule S of a intervals where no two intervals in S conflict, and the total number of intervals in S is maximized.

Sample Input and Output

Example 1

No intervals overlap

Task 1

Return S^{*}= S

Example 2

At most one overlap

Algorithm?

At most one overlap

R: set of requests

Set S to be the empty set

While R is not empty

Choose i in R

Add i to S

Remove alfromsks? that conflict with i from R

Return S^{*}= S

Example 3

More than one conflict

Set S to be the empty set While R is not empty Choose i in R Add i to S Remove all tasks that conflict with i from R Return S*= S

Greedily solve your blues!

Making it more formal

What is a good choice for v(i)?

v(i) = f(i) - s(i)

Smallest duration first

Set S to be the empty set

While R is not empty

Choose i in R that minimizes s(i)

Add i to S

Remove all tasks that conflict with i from R

So are we done?

Return S^{*}= S

Set S to be the empty set

While R is not empty

Choose i in R that minimizes s(i)

Add i to S

Remove all tasks that conflict with i from R

Return S^{*}= S

Pick job with minimum conflicts

Set S to be the empty set

While R is not empty

Choose i in R that has smallest number of conflicts Add i to S

Remove all tasks that conflict with i from R

Nope (but harder to show)

Set S to be the empty set

While R is not empty

Choose i in R that has smallest number of conflicts Add i to S

Remove all tasks that conflict with i from R

Return S^{*}= S

Algorithm?

Set S to be the empty set While R is not empty Choose i in R that minimizes v(i) Add i to S Remove all tasks that conflict with i from R Return S*= S

Earliest finish time first

Find a counter-example?

Questions?

Today's agenda

Prove the correctness of the algorithm

Final Algorithm

R: set of requests

Set S to be the empty set

While R is not empty

Choose i in R with the earliest finish time

Add i to S

Remove all requests that conflict with i from R

Return S^{*}= S