Lecture 17

CSE 331
Oct 5, 2018

Homework 5

Homework 5

Due by 11:59pm, Thursday, October 11, 2018
Make sure you follow al the homework policles.
Al submissions should be done via Autolab.

Sample Problem

The Problem

 that G is a DAG, or (b) a cycle in G_{r} thus establishing that 6 is not a DAG.

The rurring time of your algoritsm should be $O(m+n)$ for a directed graph with n nodes and m edges.

Solutions to HW 4

End of the lecture

Quiz 1 on Monday

Quiz 1 on Monday, Oct 8

The first quiz will be from 8-8:10am in class on Monday, October B. We will have a 5 mins break after the quiz and the lecture will start at 8:15am.

We will hand out the quiz paper at $7: 55$ am but you will NOT be allowed to open the quiz to see the actual questions till Bam. However, you can use those 5 minutes to go over the instructions and get yourself in the zone.

There will be two T/F with justfication questions (like those in the sample mid term 1: 9458.)
\#pin

Done with mid-term material

Linear time topological ordering
As 1 mentioned in the lecture today, one can actualy implement TopOrd in $O(m+n)$ time instead of the $O\left(n^{2}\right)$ analysis that we did in the lecture today. The detals are in the book or you can watch this video from last year.

BTW this is where the mid-term material ends: so all of Chapters 1,2 and 3 in the textbook (except Chapter 1,2).
*pin
lectures

Mid-term material

Everything we have covered so far (essentially Chaps 1-3 except Sec 1.2)

See piazza post on how to prepare for the mid-terms

Main Steps in Algorithm Design

NRMP
 National Residene Matching Program

Data Structures

Correctness+Runtime Analysis

Where do graphs fit in?

Data Structures

Correctness+Runtime Analysis

Rest of the course

Data Structures

Correctness+Runtime Analysis

Greedy algorithms

Build the final solution piece by piece
wain rill lasitgine cheancr

Never undo a decision

Know when you see it

End of Semester blues

Can only do one thing at any day: what is the maximum number of tasks that you can do?

The optimal solution

Arrange tasks in some order and iteratively pick nonoverlapping tasks

Interval Scheduling Problem

Input: n intervals $[s(i), f(i))$ for $1 \leq i \leq n$
$\{s(i), \ldots, f(i)-1\}$
Output: A schedule S of the n intervals

No two intervals in S conflict
$|S|$ is maximized

Algorithm with examples

Interval Scheduling via examples

In which we derive an algorithm that solves the Interval Scheculing problem via a sequence of examples.

The problem

In thest notes we wll nolve the Iglowing problem:

Interval Scheduling Problem
 fepetserfes the firish time.

Eutsat! A schedue S of a intervals where no nes infervals in S confict, and the tobar number of insernis in S is masemusbl.

Sample Input and Output

Example 1

No intervals overlap

Task 2

Task 1

Algorithm?

R: set of requests

Set S to be the empty set

While R is not empty

Choose in R
Add i to S
Remove ifrom R

Return $\mathrm{S}^{*}=\mathrm{S}$

Example 2

At most one overlap

Task 3

Task 2

Task 1

Algorithm?

$\square \square \square \square \square \square \square$
 At most one overlap

R: set of requests

Set S to be the empty set

While R is not empty

Choose in R
Add ito S
Remove alfftanskßthat conflict with ifrom R

Return $\mathrm{S}^{*}=\mathrm{S}$

Example 3

More than one conflict

$$
\text { Task } 4 \text { Task } 5
$$

$$
\text { Task } 3
$$

```
Set S to be the empty set
While R is not empty
    Choose i in R
    Add i to S
    Remove all tasks that conflict with i from R
Return S*=S
```


Greedily solve your blues!

Party!

Making it more formal

More than one conflict

Task 4 Task 5

$$
\text { Task } 3
$$

Set S to be the empty set
While R is not empty
Choose i in R that minimizes $v(i)$
Add ito S
Remove all tasks that conflict with ifrom R
Return $\mathrm{S}^{*}=\mathrm{S}$

What is a good choice for $v(i)$?

More than one conflict

Task 4 Task 5

$$
\text { Task } 3
$$

Task 2

Set S to be the empty set
While R is not empty
Choose in R that minimizes $v(i)$
Add ito S
Remove all tasks that conflict with ifrom R
Return $\mathrm{S}^{*}=\mathrm{S}$

$v(i)=f(i)-s(i)$

Smallest duration first
Task 4 Task 5
Task 3
Task 2
Task 1

Set S to be the empty set
While R is not empty
Choose i in R that minimizes $f(i)-s(i)$
Add ito S
Remove all tasks that conflict with ifrom R
Return $\mathrm{S}^{*}=\mathrm{S}$

$v(i)=s(i)$

Earliest time first?
Task 4 Task 5
Task 3
Task 2
Task 1

Set S to be the empty set
While R is not empty

So are we done?

Choose i in R that minimizes $s(i)$
Add i to S
Remove all tasks that conflict with ifrom R
Return $\mathrm{S}^{*}=\mathrm{S}$

Not so fast....

Task 4 Task 5

Earliest time first?

Task 3

Task 2
Task 1

Task 6

Set S to be the empty set
While R is not empty
Choose i in R that minimizes $s(i)$
Add ito S
Remove all tasks that conflict with i from R
Return $\mathrm{S}^{*}=\mathrm{S}$

Pick job with minimum conflicts

Task 4 Task 5

Task 3
Task 2
Task 1

Task 6

Set S to be the empty set
While R is not empty
Choose i in R that has smallest number of conflicts
Add ito S
Remove all tasks that conflict with ifrom R
Return $\mathrm{S}^{*}=\mathrm{S}$

Nope (but harder to show)

Set S to be the empty set
While R is not empty
Choose i in R that has smallest number of conflicts
Add i to S
Remove all tasks that conflict with i from R
Return $\mathrm{S}^{*}=\mathrm{S}$

Set S to be the empty set
While R is not empty
Choose i in R that has smallest number of conflicts
Add i to S
Remove all tasks that conflict with ifrom R
Return $\mathrm{S}^{*}=\mathrm{S}$

Algorithm?

Set S to be the empty set
While R is not empty
Choose i in R that minimizes $v(i)$
Add ito S
Remove all tasks that conflict with i from R
Return $\mathrm{S}^{*}=\mathrm{S}$

Earliest finish time first

Set S to be the empty set
While R is not empty
Choose in R that minimizes $f(i)$
Add i to S
Remove all tasks that conflict with i from R
Return $\mathrm{S}^{*}=\mathrm{S}$

Find a counter-example?

Questions?

Today's agenda

Prove the correctness of the algorithm

Final Algorithm

R: set of requests

Set S to be the empty set
While R is not empty

Choose in R with the earliest finish time
Add i to S
Remove all requests that conflict with ifrom R
Return $\mathrm{S}^{*}=\mathrm{S}$

