Lecture 17/

CSE 331
Oct 5, 2018

Homework 5

Homework 5

Due by 11:58pm, Thursday, October 11, 2018
Mak@ sure you follow al the homework polices
Al SUDMISSONS Should Da done via Autolad,

Sample Problem

The Problem
Ex%nd he 1000IO0CH Sroerng SISOMTNM wa Sw 1N Cliid 80 T, Ghven &N POt cirected graph (U, 2 outDuts one of Dwd thage:) & IOSGIOSEE Srdering, Thus estatiairg

mat G s a DAG, o & a oycle in G, 1hus essabishing hat (G s not 8 DAG
The runnng 1eme oF your SQonnm should be Om + 1) O a arecied graoh with A NOCES and M adges

Solutions to HW 4

End of the lecture

Quiz 1 on Monday

B o —
Quiz 1 on Monday, Oct 8

The first quiz will be fom 8-8:10am in class on Monday, October 8. We wil have a 5 mns break after the quiz and the lecture wit
stant ot 8:.15am.

We will hand out the quiz paper at 7:55am but you will NOT be allowed 10 open the quiz 10 see the actual questions till Bam. However,
you can use those 5 minutes 10 go over the instructions and get yourself in the zone.

There will be two T/F with justification quastions (like those in the sample mid term 1: B458)
#pin

Quizl

a good note | | Updated 3 days ago by Mark Armatrong and Atrt Rudr

Done with mid-term material

B o

Linear time topological ordering

As | mentioned in the lecture today, one can actually implement TopOrd in O(m + n) time instead of the O(n?) analyss that we did
in the lecture today. The detads are in the book or you can watch this video from last year

BTW this s where the mid-term matenal ends: 50 all of Chapters 1, 2 and 3 In the textbook (except Chapler 1.2),
#pin

o

Mid-term material

Everything we have covered so far (essentially Chaps 1-3 except Sec 1.2)

See piazza post on how to prepare for the mid-terms

Main Steps in Algorithm Design

Problem Statement

Problem Definition

Algorithm

“Implementation” Data Structures

Analysis Correctness+Runtime Analysis

Where do graphs fit in?

Problem Statement

= 4

Problem Definition

A tool to define
problems

Algorithm

“Implementation” Data Structures

Analysis Correctness+Runtime Analysis

Rest of the course

Problem Statement

Problem Definition

e
Three general ‘ O
techniques

Algorithm

“Implementation” Data Structures

Analysis Correctness+Runtime Analysis

Greedy algorithms

Build the final solution piece by piece

waitinjtilliasilduitzicheaner
-

Being short sighted on each piece

Never undo a decision

b

End of Semester blues

Can only do one thing at any day: what is the

maximum number of tasks that you can do?

Write up a term paper

Party!

Exam study mework 331 HW

Sunday Monday Tuesday Wednesday Thursday

The optimal solution

Arrange tasks in some order and iteratively pick non-

overlapping tasks

—-— ey

Monday Tuesday Wednesday Thursday Friday

Interval Scheduling Problem

Input: n intervals [s(i), f(i)) for 1<i<n

0

Output: A schedule S of the n intervals

No two intervals in S conflict

|S| is maximized

Algorithm with examples

Interval Scheduling via examples

N Which we Jerive an 8igorithm hat sohves the iInterval SChaGuing oroliam via a Secuence of exampies

The problem

I hann Noten we Wi 30ive T ‘lowirg probiem

interval Scheduling Problem
m&- oot of u indervais [0 F11), or in other wores, 4nli) JU) = 1h%or | <1 5 n wham | eprsserss the intervals, #(/) mpresects Te start Sme, and f(1)
reCresers the frvah e

A schaduie S of A rRervals whHars 10 Ded Mervilis 1 S COMMCL and the 1008 AumDer OF Ml 1 S B maomsed

Sample Input and Output

Example 1

No intervals overlap

Task 2

Algorithm?

—— . No |
o Intervals overla
I] P

R: set of requests

Example 2

At most one overlap

Task 2

Algorithm?

[] B [
I mmm & mmm At most one overlap

R: set of requests

Example 3

More than one conflict

Task 4

Task 5

Task 2

/Set S to be the empty set

While R is not empty

ChooseiinR
AdditoS

Remove all tasks that conflict with i from R

KReturn S*=S

n

4

Greedily solve your blues!

Arrange tasks in some order and iteratively pick non-

overlapping tasks

Write up a term paper

Party!

Monday Tuesday Wednesday Thursday Friday

Making it more formal

More than one conflict

Task 4

Task 5

Task 2

/Set S to be the empty set

While R is not empty

Choose i in R that minimizes v(i)
AdditoS

Remove all tasks that conflict with i from R

KReturn S*=S

4

value
with task

What is a good choice for v(i)?

More than one conflict

Task 4

Task 5

Task 2

/Set S to be the empty set

While R is not empty
Choose i in R that minimizes v(i)
AdditoS

Remove all tasks that conflict with i from R

KReturn S*=S

4

value
with task

v(i) = £(i) — s(i)

Smallest duration first

Task 4

Task 5

Task 2

/Set S to be the empty set

While R is not empty

Choose i in R that minimizes f(i) — s(i)
AdditoS

Remove all tasks that conflict with i from R

KReturn S*=S

n

4

Earliest time first?

/Set S to be the empty set

While R is not empty

Choose i in R that minimizes s(i)
AdditoS

Remove all tasks that conflict with i from R

KReturn S*=S

N

Task 4

Task 5

4

Task 2

So are we

done?

Not so fast....

Earliest time first?

Task 4

Task 5

Task 2

Task 6

/Set S to be the empty set
While R is not empty

Choose i in R that minimizes s(i)
AdditoS

KReturn S*=S

~

Remove all tasks that conflict with i from R

v

Pick job with minimum conflicts
Task 4 || Task 5

Task 2

/Set S to be the empty set \

While R is not empty So are we

Choose i in R that has smallest number of conflicts
AdditoS

Remove all tasks that conflict with i from R

KReturn S*=S /

done?

Nope (but harder to show)

Task 7

Task 10

Task 4 Task 5 Task 17
Task 6 Task 8 -
/Set S to be the empty set

Addito S

\Return S*=S

While R is not empty

Choose i in R that has smallest number of conflicts

Remove all tasks that conflict with i from R

~

4

Algorithm?

Task 7

Task 4 Task 5 Task 17

Task 2

Task 6 Task 8 - Task 10

/Set S to be the empty set \

While R is not empty

Choose i in R that minimizes v(i)
AdditoS

Remove all tasks that conflict with i from R

KReturn S*=S J

Earliest finish time first

Task 7

Task 4 Task 5 Task 17

Task 2

Task 6 Task 8 - Task 10

/Set S to be the empty set \

While R is not empty

Choose i in R that minimizes f(i)
AdditoS

Remove all tasks that conflict with i from R

KReturn S*=S J

Find a counter-example?

Task 7

Task 4

Task 5

2

Task 17

Task 6

Task 8 - Task 10

While R is not empty

Addito S

\Return S*=S

/Set S to be the empty set

Choose i in R that minimizes f(i)

Remove all tasks that conflict with i fro

Questions?

Today’s agenda

Prove the correctness of the algorithm

Final Algorithm

R: set of requests

