Lecture 20

CSE 331
Oct 12, 2018

Mid-term-I Monday

In class

8:00am-8:50am sharp

Eight 2 part True/False with justification Qs

Graded Quiz 1

Quiz 1 grade and stats
Quiz 1 has been graded and the scores released on Autolab.
Here are the stats

Problem	Mean	Median	StdDer	Max	Min
Q1 (a)-part 1	1.1	1.0	0.9	2.0	0.0
Q1 (b)-part 1	1.2	1.0	0.8	2.0	0.0
Q1 (a)-part 2	0.6	0.0	1.0	3.0	0.0
Q1 (b)-part 2	0.9	0.0	1.1	3.0	0.0
Total	3.7	4.0	2.0	10.0	0.0

Graded HW4

Hopefully by tonight

Short review session

"Post mortem" of Quiz 1

HW5 Solutions

At the end of the lecture

Extra Office Hours today

Extra OH tomorrow (Friday)

Here are the office hours for tomorrow (where you can pick up solutions to HWs 1-5):

- 1345pm-2:30pm: Chris
- 3-4:30pmi Charles
- 4-4:45pm: Dhruv
- 4:45-5:15pm: Atri
- 5:15-6pm: Stephen

All TA office hours will be in Salvador Lounge and Atr's will be in Davis 319. Apin

Questions?

The "real" end of Semester blues

Write up a term paper

Party!

Exam study
331 HW

The "real" end of Semester blues

Write up a term paper

Exam study

Party!

$\|$
331 HW

The algorithmic task

Write up a term paper

Project

Scheduling to minimize lateness

Write up a term paper

Exam study

One possible schedule

Scheduling to minimize lateness

n jobs: ith job $\left(\mathrm{t}_{\mathrm{i}}, \mathrm{d}_{\mathrm{i}}\right)$
start time: s

Schedule the n jobs: ith job gets interval $\left[\mathrm{s}(\mathrm{i}), \mathrm{f}(\mathrm{i})=\mathrm{s}(\mathrm{i})+\mathrm{t}_{\mathrm{i}}\right)$

Algo picks s(i)
GOAL: Minimize MAXIMUM lateness

Lateness of job $\mathrm{i}, \mathrm{I}_{\mathrm{i}}=\max \left(0, f(\mathrm{i})-\mathrm{d}_{\mathrm{i}}\right)$

Questions?

The Greedy Algorithm

(Assume jobs sorted by deadline: $d_{1} \leq d_{2} \leq \ldots . . \leq d_{n}$)

$$
\mathrm{f}=\mathrm{s}
$$

n iterations
For every i in 1..n do
Schedule job i from $s(i)=f$ to $f(i)=f+t_{i}$ $f=f+t_{i}$

O(n) overall.

$O(n \log n)$ if deadlines are not sorted.

Solving end of Semester blues

Questions?

Quiz 1 review

(a) (Part 1) Argue why the following statement is TRUE. If $f(n)=c \cdot g(n)$, then $2^{f(n)}=\left(2^{g(n)}\right)^{c}$ for every real number c.

Solution 1

Solution 2

For any $x, y,\left(2^{x}\right)^{y}=2^{x^{*} y}$

This argues why the $2^{\text {nd }}$ equality is true

Q1 (a): part 2

(Part 2) Is the following statement true or false? Also remember to briefly JUSTIFY your answer. If $f(n)$ is $\Theta(g(n))$, then $2^{f(n)}$ is $\Theta\left(2^{g(n)}\right)$.

Q 1(b): part 2

(Part 2) Is the following statement true or false? Also remember to briefly JUSTIFY your answer.
The Gale Shapley algorithm (with women proposing) on such inputs runs in $O(n)$ time.

True False (Please CIRCLE your answer)
Solution 1

The Q is asking about specific inputs and not general inputs

FALSE In class we saw GS runs in $O\left(\mathrm{n}^{2}\right)$ time

Solution 2

$$
\begin{aligned}
& \text { Linear time for GS is } \\
& O\left(n^{2}\right)
\end{aligned}
$$

TRUE In class we saw GS is a linear time algorithm

Some other reminders

Re-use as much as possible (remember Q3(a) on HW 3!

If you do everything from
Make sure your references are precise! scratch you will NOT be able to finish on time

Review all HWs, recitation notes, piazza T/F Qs, Quiz 1

All this and much more...

The mid-term post

First, midterm-1 is on Monday, Oet 15 and midterm-11 is on Wednesday, Oet 17 during the usual class timings (i.e. 8:00-8:50am in Norton 112). Below are some comments that might be helpful to prepare for the mid-term.
(Related post: A followup post on what to do during the exam here: 8460)

- Work through the sample mid-term exams (6458). Do not use the sample mid-term to deduce anything about the relative coverage of different topics. (See points below for more on the coverage.) The sample mid-terms are meant for you to see the format of the questions. The actual mid term exams will be harder than the sample mid term exams. The actual mid-terms will follow the exact same format for the sample midterms: Le. first mid-term will be only T / F while the second ones will be longer ones.
- I encourage you to not look at the solutions to the sample mid-terms before you have spent some quality time by yourself on the mid-term questions first.
- Use the quiz on Oct 8 (6461) to get some practice in solving T/F questions under some time pressure. Also review the T/F polls for more examples of such T/F questions.
- Review the HW problems/solutions. There will be at least one problem (among mid-term-l and mid-term-ll) that will be closely related to a HW problem. If you did not pick up solutions to a HW (or misplaced them), they'll be avalable for pickup: more details TBA later this week.
- You will be under (a bit of) time pressure in the mid-term exams-- it might be useful for you to use the sample mid-term to decide on how much time you are going to spend on each question. Also read the instructions on the first page and keep them in mind during the exam (the instructions will of course be repeated on the exam sheet).

More detailed feedback response

later

Overall your feeling about CSE 331

68 responses

> If something is not clear, please ask for help/clarification

Q3 (b) are supposed to hard for groups

Do you collaborate on the HWs?
27 responses

- Only on Q2
- Only on Q3
- On both Q2 and Q3

No, I do it all by myself

- Wait, you can collaborate on the HWs?

