Lecture 22

CSE 331
Oct 24, 2018

Grading

Mid-term-1 hopefully by tonight

Mid-term-2 hopefully by Friday

HW 5 hopefully by weekend

Scheduling to minimize lateness

n jobs: ith job $\left(t_{i}, d_{i}\right)$
start time: s
Schedule the n jobs: ith job gets interval $\left[\mathrm{s}(\mathrm{i}), \mathrm{f}(\mathrm{i})=\mathrm{s}(\mathrm{i})+\mathrm{t}_{\mathrm{i}}\right)$

Algo picks s(i)
GOAL: Minimize MAXIMUM lateness

Lateness of job $i, I_{i}=\max \left(0, f(i)-1-d_{i}\right)$

The Greedy Algorithm

(Assume jobs sorted by deadline: $\mathrm{d}_{1} \leq \mathrm{d}_{2} \leq \ldots . . \leq \mathrm{d}_{\mathrm{n}}$)

$$
\begin{aligned}
& f=s \\
& \text { For every } i \text { in 1..n do } \\
& \text { Schedule job i from } s(i)=f \text { to } f(i)=f+t_{i} \\
& \quad f=f+t_{i}
\end{aligned}
$$

Two definitions for schedules

Idle time Max "gap" between two consecutively scheduled tasks

Inversion
(i, j) is an inversion if i is scheduled before j but $d_{i}>d_{j}$
$\mathrm{f}=1$

For every i in 1..n do
Schedule job ifrom $s_{i}=f$ to $f_{i}=f+t_{i}$
$f=f+t_{i}$

Proof structure

Any two schedules with 0 idle time and 0 inversions have the same max lateness

$$
\text { Greedy schedule has } 0 \text { idle time and } 0 \text { inversions }
$$

There is an optimal schedule with 0 idle time and 0 inversions

Today's agenda

"Exchange" argument to convert an optimal solution into a 0 inversion one

