Lecture 31

CSE 331 Nov 13, 2018

Counting Inversions

Input: n distinct numbers a₁,a₂,...,a_n

Inversion: (i,j) with i < j s.t. $a_i > a_j$

Output: Number of inversions

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

Solve all sub-problems: Mergesort

Solve some sub-problems: Multiplication

Solve stronger sub-problems: Inversions

"Patch up" the solutions to the sub-problems for the final solution

Handling crossing inversions

Sort a_L and a_R recursively!

Mergesort-Count algorithm

Input: a₁, a₂, ..., a_n

Output: Numbers in sorted order+ #inversion

T(2) = cMergeSortCount(a, n) T(n) = 2T(n/2) + cnIf n = 1 return (0, a_1) If n = 2 return (a1 > a2, min(a₁,a₂); max(a₁,a₂)) O(n log n) time $a_L = a_1, ..., a_{n/2}$ $a_R = a_{n/2+1}, ..., a_n$ $(c_1, a_1) = MergeSortCount(a_1, n/2)$ O(n) $(c_R, a_R) = MergeSortCount(a_R, n/2)$ Counts #crossing-inversions+ $(c, a) = MERGE-COUNT(a_L, a_R)$ MERGE return ($c+c_1+c_R,a$)

MERGE-COUNT(a_L,a_R)

 $a_{L} = I_{1}, ..., I_{n'}$ $a_{R} = r_{1}, ..., r_{m}$

c = 0i,j = 1 while $i \leq n'$ and $j \leq m$ if $I_i < r_j$ i ++ add l_i to output else add r_i to output i ++ c += n' - i + 1Output any remaining items return c

Closest pairs of points

Input: n 2-D points $P = \{p_1,...,p_n\}; p_i = (x_i, y_i)$

 $d(p_i, p_j) = ((x_i - x_j)^2 + (y_i - y_j)^2)^{1/2}$

Output: Points p and q that are closest

Group Talk time

O(n²) time algorithm?

1-D problem in time O(n log n) ?

Sorting to rescue in 2-D?

Pick pairs of points closest in x co-ordinate

Pick pairs of points closest in y co-ordinate

Choose the better of the two

A property of Euclidean distance

The distance is larger than the **x** or **y**-coord difference

Rest of Today's agenda

Divide and Conquer based algorithm

Dividing up P R Q

First n/2 points according to the x-coord

Recursively find closest pairs

An aside: maintain sorted lists

 P_x and P_y are P sorted by x-coord and y-coord

 Q_x , Q_y , R_x , R_y can be computed from P_x and P_y in O(n) time

Life is not so easy though

Rest of Today's agenda

Divide and Conquer based algorithm

Euclid to the rescue (?)

The distance is larger than the **x** or **y**-coord difference

All we have to do now

The algorithm so far...

 $O(n \log n) + T(n)$

Input: n 2-D points $P = \{p_1,,p_n\}; p_i = (x_i,y_i)$		
Sort P to get P _x and P _y		
Closest-Pair (P _x , P _y)	O(n log n)	T(< 4) = c
If n < 4 then find closest point by brute-force		T(n) = 2T(n/2) + cn
Q is first half of P _x and R is the rest	O(n)	
Compute Q_x , Q_y , R_x and R_y	O(n)	
$(q_0,q_1) = Closest-Pair (Q_x, Q_y)$		O(n log n) overall
$(r_0, r_1) = Closest-Pair (R_x, R_y)$		
$δ = min (d(q_0, q_1), d(r_0, r_1))$	O(n)	
S = points (x,y) in P s.t. $ x - x^* < \delta$	O(n)	
return Closest-in-box (S, (q ₀ ,q ₁), (r ₀ ,r ₁))	Assume o	an be done in O(n)