
Lecture 31

CSE 331
Nov 13, 2018

Counting Inversions

Input: n distinct numbers a1,a2,…,an

Inversion: (i,j) with i < j s.t. ai > aj

Output: Number of inversions

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

�Patch up� the solutions to the sub-problems for the final solution

Solve all sub-problems: Mergesort

Solve some sub-problems: Multiplication

Solve stronger sub-problems: Inversions

Handling crossing inversions

aL aR

1 100 2 4

Why should aL
and aR be
sorted?http://www.dovecoteidea.com/

Sort aL and aR recursively!

Mergesort-Count algorithm
Input: a1, a2, …, an Output: Numbers in sorted order+ #inversion

MergeSortCount(a, n)

If n = 2 return (a1 > a2, min(a1,a2); max(a1,a2))

aL = a1,…, an/2 aR = an/2+1,…, an

return (c+cL+cR,a)

(cL, aL) = MergeSortCount(aL, n/2)

(cR, aR) = MergeSortCount(aR, n/2)

(c, a) = MERGE-COUNT(aL,aR) Counts #crossing-inversions+
MERGE

O(n)

T(2) = c

T(n) = 2T(n/2) + cn

O(n log n) time

If n = 1 return (0 , a1)

MERGE-COUNT(aL,aR)
aL = l1,…, ln’ aR = r1,…, rm

c = 0
i,j = 1

if li < rj

i ++

else

j ++
c += n’- i +1

return c

5 6 …..

aL aR

1

5 6 …..

aL aR

1

add li to output

add rj to output

Output any remaining items

Closest pairs of points

Input: n 2-D points P = {p1,…,pn}; pi=(xi,yi)

Output: Points p and q that are closest

d(pi,pj) = ((xi-xj)2+(yi-yj)2)1/2

Group Talk time

O(n2) time algorithm?

1-D problem in time O(n log n) ?

Sorting to rescue in 2-D?
Pick pairs of points closest in x co-ordinate

Pick pairs of points closest in y co-ordinate

Choose the better of the two

A property of Euclidean distance

d(pi,pj) = ((xi-xj)2+(yi-yj)2)1/2

yi

xi xj

yj

The distance is larger than the or -coord difference

Rest of Today’s agenda

Divide and Conquer based algorithm

Dividing up P

First n/2 points according to the x-coord

Q
R

Recursively find closest pairs

δ = min (,)

Q
R

An aside: maintain sorted lists

Px and Py are P sorted by x-coord and y-coord

Qx, Qy, Rx, Ry can be computed from Px and Py in O(n) time

An easy case

δ = min (,)

Q
R> δ

All �crossing� pairs have distance > δ

Life is not so easy though

δ = min (,)

Q
R

Rest of Today’s agenda

Divide and Conquer based algorithm

Euclid to the rescue (?)

d(pi,pj) = ((xi-xj)2+(yi-yj)2)1/2

yi

xi xj

yj

The distance is larger than the or -coord difference

Life is not so easy though

δ = min (,)

Q
R

δ δ

> δ

> δ

> δ

All we have to do now

δ = min (,)

Q
R

δ δ

S Figure if a pair in S has distance < δ

The algorithm so far…
Input: n 2-D points P = {p1,…,pn}; pi=(xi,yi)

Sort P to get Px and Py

Q is first half of Px and R is the rest

Closest-Pair (Px, Py)

Compute Qx, Qy, Rx and Ry

(q0,q1) = Closest-Pair (Qx, Qy)

(r0,r1) = Closest-Pair (Rx, Ry)

δ = min (d(q0,q1), d(r0,r1))

S = points (x,y) in P s.t. |x – x*| < δ

return Closest-in-box (S, (q0,q1), (r0,r1))

If n < 4 then find closest point by brute-force

Assume can be done in O(n)

O(n log n)

O(n)

O(n)

O(n)

O(n)

O(n log n) + T(n)

T(< 4) = c

T(n) = 2T(n/2) + cn

O(n log n) overall

