Lecture 31

CSE 331
Nov 13, 2018

Counting Inversions

Input: n distinct numbers $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}$

Inversion: (i,j) with $\mathrm{i}<\mathrm{j}$ s.t. $\mathrm{a}_{\mathrm{i}}>\mathrm{a}_{\mathrm{j}}$

Output: Number of inversions

Divide and Conquer

Divide up the problem into at least two sub-problems

Solve all sub-problems: Mergesort
Recursively solve the sub-problems
Solve some sub-problems: Multiplication
Solve stronger sub-problems: Inversions
"Patch up" the solutions to the sub-problems for the final solution

Handling crossing inversions

Sort a_{L} and a_{R} recursively!

Mergesort-Count algorithm

Output: Numbers in sorted order+ \#inversion

$$
\begin{aligned}
& T(2)=c \\
& T(n)=2 T(n / 2)+c n \\
& O(n \text { log } n) \text { time }
\end{aligned}
$$

$a_{L}=a_{1}, \ldots, a_{n / 2} \quad a_{R}=a_{n / 2+1}, \ldots, a_{n}$
$\left(c_{L}, a_{L}\right)=$ MergeSortCount $\left(a_{L}, n / 2\right)$
$\left(c_{R}, a_{R}\right)=$ MergeSortCount $\left(a_{R}, n / 2\right)$
$(c, a)=$ MERGE-COUNT $\left(a_{L}, a_{R}\right)$
return $\left(c+c_{L}+c_{R}, a\right)$

MERGE-COUNT $\left(a_{1}, a_{R}\right)$

$$
a_{L}=I_{1}, \ldots, I_{n} \quad a_{R}=r_{1}, \ldots, r_{m}
$$

$$
c=0
$$

$$
i, j=1
$$

while $\mathrm{i} \leq \mathrm{n}$ and $\mathrm{j} \leq \mathrm{m}$

$$
\begin{aligned}
& \text { if } \mathrm{I}_{\mathrm{i}}<\mathrm{r}_{\mathrm{j}} \\
& \quad \mathrm{i}++ \\
& \quad \text { add } \mathrm{I}_{\mathrm{i}} \text { to output } \\
& \text { else } \\
& \quad \text { add } \mathrm{r}_{\mathrm{j}} \text { to output } \\
& \mathrm{j}++ \\
& \mathrm{c}+=\mathrm{n}^{\prime}-\mathrm{i}+1
\end{aligned}
$$

Output any remaining items return c

Closest pairs of points

Input: $n 2-D$ points $P=\left\{p_{1}, \ldots, p_{n}\right\} ; p_{i}=\left(x_{i}, y_{i}\right)$

$$
\mathrm{d}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)=\left(\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right)^{2}+\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{j}}\right)^{2}\right)^{1 / 2}
$$

Output: Points p and q that are closest

Group Talk time

$\mathrm{O}\left(\mathrm{n}^{2}\right)$ time algorithm?

1-D problem in time $O(n \log n)$?

Sorting to rescue in 2-D?

Pick pairs of points closest in x co-ordinate

Pick pairs of points closest in y co-ordinate

Choose the better of the two

A property of Euclidean distance

$$
d\left(p_{i}, p_{j}\right)=\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)^{1 / 2}
$$

The distance is larger than the \mathbf{x} or \mathbf{y}-coord difference

Rest of Today's agenda

Divide and Conquer based algorithm

Dividing up P

First $\mathrm{n} / 2$ points according to the x -coord

Recursively find closest pairs

An aside: maintain sorted lists

P_{x} and P_{y} are P sorted by x-coord and y-coord
$Q_{x}, Q_{y}, R_{x}, R_{y}$ can be computed from P_{x} and P_{y} in $O(n)$ time

An easy case

Life is not so easy though

Rest of Today's agenda

Divide and Conquer based algorithm

Euclid to the rescue (?)

$$
d\left(p_{i}, p_{j}\right)=\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)^{1 / 2}
$$

The distance is larger than the \mathbf{x} or \mathbf{y}-coord difference

Life is not so easy though

$\delta=\min$ (blue, green)

All we have to do now

$\delta=\min$ (blue, green)

The algorithm so far...

Input: n 2-D points $P=\left\{p_{1}, \ldots, p_{n}\right\} ; p_{i}=\left(x_{i}, y_{i}\right)$
$O(n \log n)+T(n)$

Sort P to get P_{x} and P_{y}
Closest-Pair (P_{x}, P_{y})
O(n $\log \mathrm{n})$

$$
T(<4)=c
$$

If $\mathrm{n}<4$ then find closest point by brute-force

$$
T(n)=2 T(n / 2)+c n
$$

Q is first half of P_{x} and R is the
Compute Q_{x}, Q_{y}, R_{x} and R_{y}
O(n)
O(n)
$\left(q_{0}, q_{1}\right)=$ Closest-Pair $\left(Q_{x}, Q_{y}\right)$
$\left(r_{0}, r_{1}\right)=$ Closest-Pair $\left(R_{x}, R_{y}\right)$
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$ overall
$\delta=\min \left(d\left(q_{0}, q_{1}\right), d\left(r_{0}, r_{1}\right)\right)$
$S=$ points (x, y) in P s.t. $\left|x-x^{*}\right|<\delta$
return Closest-in-box $\left(S,\left(q_{0}, q_{1}\right),\left(r_{0}, r_{1}\right)\right)$

