Lecture 31

CSE 331
Nov 13, 2018

Counting Inversions

-

Input: n distinct numbers a,,a,,...,a,

Inversion: (i,j) with i <js.t. a; > g

Output: Number of inversions

Divide and Conquer

Divide up the problem into at least two sub-problems

Solve all sub-problems: Mergesort

Recursively solve the sub-problems ——
Solve some sub-problems: Multiplication

Solve stronger sub-problems: Inversions

“Patch up” the solutions to the sub-problems for the final solution

Handling crossing inversions

ap dr

1

Why should a,

and ag be
sorted?

http://www.dovecoteidea.com/

Sort a, and ag recursively!

Mergesort-Count algorithm

Input: a, a,, ..., a, Output: Numbers in sorted order+ #inversion

MergeSortCount(a, n)

If n=1return (0, a,)
If n =2 return (al > a2, min(ay,a,); max(ay,a))

dL = dy,..., Ap)2 dR = Ap/2+1,+++ 9n
(c., a.) = MergeSortCount(a,, n/2)

(cg, ag) = MergeSortCount(ag, n/2)

T(2)=c

T(n) = 2T(n/2) + cn

O(n log n) time

(c, a) = MERGE-COUNT(a,aR)

return (c+c +cg,a)

MERGE-COUNT(a,,ag)

aL=|1,...,|n’ aR=r1,"'1rm
c=0
i,j=1
whilei<n'andj<m
if I <r, 1 5 | 6
| ++ a_ ar
add [; to output
else
add r; to output 5 | 6 ,
j++
c+=n’-i+1 aL ar

Output any remaining items
return c

Closest pairs of points

A
Input: n 2-D points P = {py,...,pn}; pi=(X;,Yi) o

o :
d(pup) = ((x%)2+{yry)) o ./

Output: Points p and g that are closest

Group Talk time

O(n?) time algorithm?

1-D problem in time O(n log n) ?

Sorting to rescue in 2-D?

Pick pairs of points closest in x co-ordinate

Pick pairs of points closest in y co-ordinate

Choose the better of the two ®

A property of Euclidean distance

_x— - - -
X

The distance is larger than the x or y-coord difference

Rest of Today’s agenda

Divide and Conquer based algorithm

Dividing up P

First n/2 points according to the x-coord

Recursively find closest pairs

6 = min (blue, green)

An aside: maintain sorted lists

P, and P, are P sorted by x-coord and y-coord

Q, Q,, Ry, R, can be computed from P, and P, in O(n) time

An easy case

> 6

All “crossing” pairs have distance > &

& = min (blue, green) W

Life is not so easy though

6 = min (blue, green)

Rest of Today’s agenda

Divide and Conquer based algorithm

Euclid to the rescue (?)

d(pirpj) = (Xi-Xj)2+(yi-yj)2)1/2 Yjmpmmpmm e

Yimt-

V- — C R B B]

_x— - - -
X

The distance is larger than the x or y-coord difference

Life is not so easy though

6 = min (blue, green)

All we have to do now

6 = min (blue, green)

Figure if a pair in S has distance < 6

The algorithm so far...

O(n log n) + T(n)
Input: n 2-D points P = {py,...,pn}; pi=(x;,vi)

Sort P to get P, and P,

T(<4)=c

Closest-Pair (P, P,) O(n log n)

If n < 4 then find closest point by brute-force
Q is first half of P, and R is the rest

T(n) = 2T(n/2) + cn

Compute Q,, Q, Ry and R,

(d0,91) = Closest-Pair (Q,, Q) O(n log n) overall

(ro,r1) = Closest-Pair (R,, R,)

& = min (d(qge,q1), d(ro,r1))‘A
S = points (x,y) in Ps.t. [x—x*| <& m

return Closest-in-box (S, (go,91), (ro,r1)) I”"J‘ iii' \

