Lecture 33

CSE 331
Nov 19, 2018

Thanksgiving break

Over the thanksgiving break

Hope y'all have a great thanksgiving break!
Your 331 staff will also be on break during the Thanksgiving break and in practice this means that we will either not respond on piazza Wed-Sun or our response will be very delayed.

We'll still be around on till Tue and starting Mon, Mov 26. (Note that HW 10 is due Nov 29.)

```
plazza
```


Sample Final exam

Sample final exam

This is a bit early but I figured I'll release the sample final exam in case you were planning to prepare for the final exam over the break (and having the sample final helps):

- Sample final
- Sample final solutions
(These are also available under the "Sample Exams" dropdown menu from the banner on the 331 webpage.)
Two comments:
- I would recommend that you not peek at the solution before you have worked on the sample final on your own.
- As with the sample mid-terms, do not try and deduce anything about the topic coverage in the actual final exam (will post on how to prepare for the final exam by tonight).
- However, the sample exam was an actual final exam in one of the past years. Your final exam will be of comparable difficuity.

Final exam: Dec 10

Final exam post

I'll start off with some generic comments:

- The final exam will be based on all the material we will see in class up to the P vs NP stuff (we'll most likely finish that stuff by Monday, Dec 3 or in the worst-case by Wednesday, Dec 5).
- The lecture on Friday, Dec 7 will be a Q\& A session (where you can ask any 331 related questions)-- stay funed for more details.
- Exam will be from 8:30 to 11:00am on Monday, Dec 10 in class (Norton 112). Note that the exam will be for 2.5 hours and not 3 hours as it says on HUB.
- If you have three of more exams scheduled on Dec 10, please contact me NO later than 5PM on Monday, DECEMBER 3. If you contact me after Dec 3, I won't be able to accommodate any re-scheduling request.

Next are comments related to preparing for the finals:

1. Take a look at the sampie final (6975) and spend some quality time solving x . Unike the homeworks, it might be better to try to do this on your own. Unlike the sample mid-term, this one is an actual 331 final exam so in addition to the format, you can also gauge how hard the final exam is going to be (your final exam will be the same ballpark). However as with the sample mid-term, you make deductions about the coverage of topics at your own peril (but see points below). Once you have spent time on it on your own, take a look at the sample final solutions (b975).
2. We will have some extra OH's on Friday, Dec 7 (stay tuned for more detals).
3. Attend the QSA session (Friday, Dec 7) in class.
4. The actual final will have the same format as the sample final: The first question will be T/F, 2nd will be T/F with justification, the rest of the three will be longer questions and will ask you to design algorithms (parts of them might be just analyzing an Aloneithm)

Graded HW 7

Should be done by tonight

High level view of CSE 331

Data Structures

Correctness+Runtime Analysis

Greedy Algorithms

Natural algorithms

Reduced exponential running time to polynomial

Divide and Conquer

Recursive algorithmic paradigm

Reduced large polynomial time to smaller polynomial time

A new algorithmic technique

Dynamic Programming

Dynamic programming vs. Divide \& Conquer

Same same because

Both design recursive algorithms

Different because

Dynamic programming is smarter about solving recursive sub-problems

End of Semester blues

Can only do one thing at any day: what is the optimal schedule to obtain maximum value?

Exam study (5)
331 HW (3)

Previous Greedy algorithm

Order by end time and pick jobs greedily

Today's agenda

Formal definition of the problem

Start designing a recursive algorithm for the problem

Weighted Interval Scheduling

Input: n jobs/intervals. Interval i is triple ($\mathrm{s}_{\mathrm{i}}, \mathrm{f}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}$)
start time
value
finish time

Output: A valid schedule $S \subseteq[n]$ that maximizes $v(S)$

$$
v_{2}=4
$$

$$
\begin{array}{ll}
v_{3}=2 & v(S)=\Sigma_{i_{E} S} v_{i} \\
v_{4}=3 \\
v_{1}=30 & 2
\end{array}
$$

Previous Greedy Algorithm

$R=$ original set of jobs
$S=\phi$
While R is not empty
Choose i in R where f_{i} is the smallest
Add i to S
Remove all requests that conflict with i from R
Return $\mathrm{S}^{*}=\mathrm{S}$

$$
v_{3}=2
$$

$v_{2}=4$

$$
v_{4}=3
$$

Perhaps be greedy differently?

$R=$ original set of jobs
$S=\phi$

While R is not empty
Choose i in R where $v_{i} /\left(f_{i}-s_{i}\right)$ is the largest
Add i to S
Remove all requests that conflict with i from R
Return $\mathrm{S}^{*}=\mathrm{S}$

$$
v_{3}=2
$$

$v_{2}=4$

$$
v_{4}=3
$$

Can this work?

$R=$ original set of jobs
$S=\phi$
While R is not empty
Choose i in R where $v_{i} /\left(f_{i}-s_{i}\right)$ is the largest
Add i to S
Remove all requests that conflict with i from R
Return $\mathrm{S}^{*}=\mathrm{S}$

$$
v_{3}=2
$$

$v_{2}=6$

$$
v_{4}=3
$$

Avoiding the greedy rabbit hole

https://www.writerightwords.com/down-the-rabbit-hole/
Provably IMPOSSIBLE for a large class of greedy algos

There are no known greedy algorithm to solve this problem

Perhaps a divide \& conquer algo?

Divide the problem in 2 or more many EQUAL SIZED INDEPENDENT problems

Recursively solve the sub-problems

Patchup the SOLUTIONS to the sub-problems

Perhaps a divide \& conquer algo?

```
RecurWeightedInt([n])
    if n = 1 return the only interval
    L = first n/2 intervals
    R = last n/2 intervals
SL}=\mathrm{ RecurWeightedInt(L)
SR}=\mathrm{ RecurWeightedInt(R)
PatchUp(SL, SR)
```


Would this
 general scheme work?

Divide the problem in 2 or more many EQUAL SIZED INDEPENDENT problems

Sub-problems NOT independent!

Perhaps patchup can help?

Patchup the SOLUTIONS to the sub-problems

Sometimes patchup NOT needed!

Check for two cases?

6 is in the optimal solution

$$
v_{6}=20
$$

Check if v_{6} is the largest value?

6 is in the optimal solution

Check out both options!

Case 1: 6 is in the optimal solution

6 is not in optimal solution

$$
v_{6}=20
$$

So what sub-problems?

Divide the problem in 2 or more many 든unt ㅇizan NVDCRENDCNT problems

