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Mini project video has been graded



Incentive to fill in course evals



End of Semester blues

Monday Tuesday Wednesday Thursday Friday

Project

331  HWExam study

Party!

Write up a term paper

Can only do one thing at any day: what is the optimal 
schedule to obtain maximum value?

(30)

(3)

(2)

(5)

(10)



Previous Greedy algorithm

Monday Tuesday Wednesday Thursday Friday

Order by end time and pick jobs greedily

Project (30)

331  HW (3)

Party! (2)

Exam study (5)

Write up a term paper (10)

Greedy value = 5+2+3= 10

OPT = 30



Weighted Interval Scheduling

Input: n jobs (si,fi,vi)

Output: A schedule S s.t. no two jobs in S have a conflict

Goal: max Σi in S vj

Assume: jobs are sorted by their finish time



Today’s agenda

Finish designing a recursive algorithm for the problem



Couple more definitions

p(j) = largest i < j s.t. i does not conflict with j

= 0 if no such i exists

OPT(j) = optimal value on instance 1,..,j

p(j) < j



Property of OPT

OPT(j)  =  max { vj + OPT( p(j) ), OPT(j-1) }

j in OPT(j)
j not in OPT(j)

Given OPT(1),…., OPT(j-1), 
how can one figure out if j
in optimal solution or not?





A recursive algorithm

Compute-Opt(j)

If j = 0 then return 0

return max { vj + Compute-Opt( p(j) ), Compute-Opt( j-1 ) }

OPT(j)  =  max { vj + OPT( p(j) ), OPT(j-1) }

Proof of 
correctness by 
induction on jCorrect for j=0

= OPT( p(j) ) = OPT( j-1 )



Exponential Running Time
1

2
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4
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p(j) = j-2

OPT(5)

OPT(3) OPT(4)

OPT(1) OPT(2)

OPT(1) OPT(1)

OPT(1) OPT(2)

OPT(1)

OPT(2)

OPT(3)
Formal 

proof: Ex.

Only 5 OPT 
values!





Using Memory to be smarter

Pow (a,n)

// n is even and ≥ 2

return Pow(a,n/2) * Pow(a, n/2) 

O(n) as we recompute!

Pow (a,n)

// n is even and ≥ 2

return t * t
t= Pow(a,n/2)

O(log n) as we compute only once



How many distinct OPT values?



A recursive algorithm

M-Compute-Opt(j)

If j = 0 then return 0

M[j] = max { vj + M-Compute-Opt( p(j) ), M-Compute-Opt( j-1 ) }

If M[j] is not null then return M[j]

return M[j]

M-Compute-Opt(j) 
= OPT(j)

Run time = O(# recursive calls)



Bounding # recursions
M-Compute-Opt(j)

If j = 0 then return 0

M[j] = max { vj + M-Compute-Opt( p(j) ), M-Compute-Opt( j-1 ) }

If M[j] is not null then return M[j]

return M[j]

Whenever a recursive call is made an 
M value is assigned

At most n values of M can be assigned

O(n) overall





Property of OPT

OPT(j)  =  max { vj + OPT( p(j) ), OPT(j-1) }

Given OPT(1), …, OPT(j-1), 
one can compute OPT(j)



Recursion+ memory = Iteration
Iteratively compute the OPT(j) values

M[0] = 0

M[j] = max { vj +  M[p(j)], M[j-1] }

For j=1,…,n

Iterative-Compute-Opt

M[j] = OPT(j) O(n) run time





Reading Assignment
Sec 6.1, 6.2 of [KT]



When to use Dynamic Programming

There are polynomially many sub-problems

Optimal solution can be computed from solutions to sub-problems

There is an ordering among sub-problem that allows for iterative solution

Richard Bellman


