
Lecture 34

CSE 331
Nov 26, 2018

Mini project video has been graded

Incentive to fill in course evals

End of Semester blues

Monday Tuesday Wednesday Thursday Friday

Project

331 HWExam study

Party!

Write up a term paper

Can only do one thing at any day: what is the optimal
schedule to obtain maximum value?

(30)

(3)

(2)

(5)

(10)

Previous Greedy algorithm

Monday Tuesday Wednesday Thursday Friday

Order by end time and pick jobs greedily

Project (30)

331 HW (3)

Party! (2)

Exam study (5)

Write up a term paper (10)

Greedy value = 5+2+3= 10

OPT = 30

Weighted Interval Scheduling

Input: n jobs (si,fi,vi)

Output: A schedule S s.t. no two jobs in S have a conflict

Goal: max Σi in S vj

Assume: jobs are sorted by their finish time

Today’s agenda

Finish designing a recursive algorithm for the problem

Couple more definitions

p(j) = largest i < j s.t. i does not conflict with j

= 0 if no such i exists

OPT(j) = optimal value on instance 1,..,j

p(j) < j

Property of OPT

OPT(j) = max { vj + OPT(p(j)), OPT(j-1) }

j in OPT(j)
j not in OPT(j)

Given OPT(1),…., OPT(j-1),
how can one figure out if j
in optimal solution or not?

A recursive algorithm

Compute-Opt(j)

If j = 0 then return 0

return max { vj + Compute-Opt(p(j)), Compute-Opt(j-1) }

OPT(j) = max { vj + OPT(p(j)), OPT(j-1) }

Proof of
correctness by
induction on jCorrect for j=0

= OPT(p(j)) = OPT(j-1)

Exponential Running Time
1

2
3

4
5

p(j) = j-2

OPT(5)

OPT(3) OPT(4)

OPT(1) OPT(2)

OPT(1) OPT(1)

OPT(1) OPT(2)

OPT(1)

OPT(2)

OPT(3)
Formal

proof: Ex.

Only 5 OPT
values!

Using Memory to be smarter

Pow (a,n)

// n is even and ≥ 2

return Pow(a,n/2) * Pow(a, n/2)

O(n) as we recompute!

Pow (a,n)

// n is even and ≥ 2

return t * t
t= Pow(a,n/2)

O(log n) as we compute only once

How many distinct OPT values?

A recursive algorithm

M-Compute-Opt(j)

If j = 0 then return 0

M[j] = max { vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1) }

If M[j] is not null then return M[j]

return M[j]

M-Compute-Opt(j)
= OPT(j)

Run time = O(# recursive calls)

Bounding # recursions
M-Compute-Opt(j)

If j = 0 then return 0

M[j] = max { vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1) }

If M[j] is not null then return M[j]

return M[j]

Whenever a recursive call is made an
M value is assigned

At most n values of M can be assigned

O(n) overall

Property of OPT

OPT(j) = max { vj + OPT(p(j)), OPT(j-1) }

Given OPT(1), …, OPT(j-1),
one can compute OPT(j)

Recursion+ memory = Iteration
Iteratively compute the OPT(j) values

M[0] = 0

M[j] = max { vj + M[p(j)], M[j-1] }

For j=1,…,n

Iterative-Compute-Opt

M[j] = OPT(j) O(n) run time

Reading Assignment
Sec 6.1, 6.2 of [KT]

When to use Dynamic Programming

There are polynomially many sub-problems

Optimal solution can be computed from solutions to sub-problems

There is an ordering among sub-problem that allows for iterative solution

Richard Bellman

