Lecture 37

CSE 331 Dec 3, 2018

Quiz 2

1:00-1:10pm

Lecture starts at 1:15pm

Final Reminder

note 🚖	stop following	144 views
Incentive for filling in course evals		
As I have done in the past few years, depending on the level of response on the official course eva the final exam. (See @975 to see what Q I mean below)	uls, I will release come o	uestions on
 If >=85% students submit the course evals, I will release Q1(a) 		
 If >=90% students submit the course evals, I will release Q1(a) AND Q2(a) 		
Some other relevant comments:		
 I will post the current response rate in the comments section below every 3 days till the dead 	line	
 The % is based on current student registered (236): i.e. it does not include students who have 	e resigned	
 I believe this is the link to the course evals: https://sunyub.smartevals.com/ 		
 But double check the email you might have received on this. 		
*pin		
fredback		
edit good note 1	Updated 6 days a	go by Atri Rudra

No quiz discussion on piazza

till Noon

Review sessions/extra OH

Friday lecture will be a Q&A session

HWs 6-9 solutions

At the end of the lecture

Shortest Path Problem

Input: (Directed) Graph G=(V,E) and for every edge e has a cost c_e (can be <0)

t in V

Output: Shortest path from every s to t

When to use Dynamic Programming

There are polynomially many sub-problems

Richard Bellman

Optimal solution can be computed from solutions to sub-problems

There is an ordering among sub-problem that allows for iterative solution

Sub-problems

OPT(u,i) = cost of shortest path from **u** to **t** with at most **i** edges

Today's agenda

Finish Bellman-Ford algorithm

Analyze the run time

The recurrence

OPT(u,i) = shortest path from u to t with at most i edges

 $OPT(u,i) = \min \left\{ OPT(u,i-1), \min_{(u,w) \text{ in } E} \left\{ c_{u,w} + OPT(w,i-1) \right\} \right\}$

Some consequences

OPT(u,i) = cost of shortest path from u to t with at most i edges

 $OPT(u,i) = \min \left\{ OPT(u, i-1), \min_{(u,w) \text{ in } E} \left\{ c_{u,w} + OPT(w,i-1) \right\} \right\}$

OPT(u,n-1) is shortest path cost between u and t

Group talk time: How to compute the shortest path between s and t given all OPT(u,i) values