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CSE 331
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Quiz 2 is graded

Peer eval grades assigned by SATURDAY



Q&A session: Friday lecture



Extra OH on Friday



Bring UB card to final exam



Shortest Path Problem

Input: (Directed) Graph G=(V,E) and for every edge e has a cost ce (can be <0)

t in V

Output: Shortest path from every s to t

1 1

100

-1000

899

s t

Shortest path has 
cost negative 

infinity

Assume that G
has no negative 

cycle



Bellman-Ford Algorithm

Runs in O(n(m+n)) time

Only needs O(n) additional space



Reading Assignment
Sec 6.8 of [KT]



Longest path problem

Given G, does there exist a simple path of length n-1 ?



Longest vs Shortest Paths



Two sides of the “same” coin

Shortest Path problem

Can be solved by a polynomial time algorithm

Is there a longest path of length n-1?

Given a path can verify in polynomial time if the answer is yes



Poly time algo for longest path?



P vs NP question

P: problems that can be solved by poly time algorithms

NP: problems that have polynomial time verifiable witness to optimal solution

Is P=NP?

Alternate NP definition: Guess witness and verify!



Proving P ≠ NP

Pick any one problem in NP and show it cannot be solved in poly time

Pretty much all known 
proof techniques 

provably will not work



Proving P = NP

Will make cryptography collapse

Compute the 
encryption key!

Prove that all problems in NP can be solved by polynomial time algorithms

NP

NP-complete 
problems

Solving any ONE 
problem in here in 

poly time will prove 
P=NP!



A book on P vs. NP



High level view of CSE 331
Problem Statement

Algorithm

Problem Definition

�Implementation�

Analysis Correctness+Runtime Analysis

Data Structures

Three general 
techniques
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If you are curious for more

CSE 429 or 431: Algorithms

CSE 396: Theory of Computation



Now relax…
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Randomized algorithms

http://calculator.mathcaptain.com/coin-toss-probability-calculator.html

What is different?

Algorithms can toss coins and make decisions

A Representative Problem

Hashing

Further Reading

Chapter 13 of the textbook CSE 430/432 in 
Spring 19!



Approximation algorithms

What is different?

Algorithms can output a solution that is say 50% as good as the optimal

A Representative Problem

Vertex Cover

Further Reading

Chapter 12 of the textbook



Online algorithms

What is different?

Algorithms have to make decisions before they see all the input

A Representative Problem

Secretary Problem

Further Reading



Data streaming algorithms

What is different?

One pass on the input with severely limited memory

A Representative Problem

Compute the top-10 source IP addresses

Further Reading

https://www.flickr.com/photos/midom/2134991985/



Distributed algorithms

What is different?

Input is distributed over a network

A Representative Problem

Consensus 

Further Reading



Beyond-worst case analysis

What is different?

Analyze algorithms in a more instance specific way

A Representative Problem

Intersect two sorted sets

Further Reading

http://theory.stanford.edu/~tim/f14/f14.html



Algorithms for Data Science

What is different?

Algorithms for non-discrete inputs

A Representative Problem

Compute Eigenvalues

Further Reading

http://research.microsoft.com/en-US/people/kannan/book-no-solutions-aug-21-2014.pdf
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Communicating with my 3 year old
C(x)

x

y = C(x)+error

x Give up

�Code� C
�Kiran English�
C(x) is a �codeword�
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The setup
C(x)

x

y = C(x)+error

x Give up

Mapping C
Error-correcting code or just code
Encoding: x ® C(x)
Decoding: y ® x
C(x) is a codeword
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Different Channels and Codes
• Internet

– Checksum used in multiple 
layers of TCP/IP stack

• Cell phones
• Satellite broadcast

– TV
• Deep space 

telecommunications
– Mars Rover 
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“Unusual” Channels
• Data Storage

– CDs and DVDs
– RAID
– ECC memory

• Paper bar codes
– UPS (MaxiCode)

Codes are all around us
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Redundancy vs. Error-correction

• Repetition code: Repeat every bit say 100 
times
– Good error correcting properties
– Too much redundancy

• Parity code: Add a parity bit
– Minimum amount of redundancy
– Bad error correcting properties
• Two errors go completely undetected

• Neither of these codes are satisfactory

1 1 1 0 0 1

1 0 0 0 0 1
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Two main challenges in coding theory

• Problem with parity example
– Messages mapped to codewords which do not 

differ in many places
• Need to pick a lot of codewords that differ a 

lot from each other

• Efficient decoding
– Naive algorithm: check received word with all 

codewords



33

The fundamental tradeoff

• Correct as many errors as possible with as 
little redundancy as possible

Can one achieve the �optimal� tradeoff with 
efficient encoding and decoding ?



Interested in more?

CSE 445/545, Spring 2019
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Superfast Matrix Vector 
Multiplication (and some deep learning mumbo-jumbo)



Ax = y

A x

Θ(N2) time in worst-case

x0

xN-1

a0,0 a0,2 a0,N-1…..

aN-1,0aN-1,1 aN-1,N-1…..

y0

yN-1

y



In practice A has structure

A x

Can we exploit the structure for 
faster algorithms?

x0

xN-1

a0,0 a0,2 a0,N-1…..

aN-1,0aN-1,1 aN-1,N-1…..

y0

yN-1

y



Discrete Fourier Transform
a0,0 a0,2 a0,N-1….. b0

aN-1,0aN-1,1 aN-1,N-1….. bN-1

A b

ax,y = exp(2πi x�y/N)

Cooley Tukey

FFT (1965) 
Can compute DFT in O(N log N) time



Cauchy Matrix
a0,0 a0,2 a0,N-1….. b0

aN-1,0aN-1,1 aN-1,N-1….. bN-1

A b

Can be computed  in 
O(N log2 N) time

ax,y =      1
rx - sy



Superfast = N poly-log(N)



The main Question

What is the largest class of 
matrices A for which we can 

have superfast algo to 
compute Ax?



Structure 1: Recurrence
a0,0 a0,2 a0,N-1….. b0

aN-1,0aN-1,1 aN-1,N-1….. bN-1

A b

ax,y = exp(2πi x�y/N)

ax,y+1 = ax,y� exp(2πi x/N)

Multiplier only 
depends on xa0,0 a0,2 a0,N-1…..

aN-1,0aN-1,1 aN-1,N-1…..

ax,y

“Multiplier 
matrix” 

only 
depends 

on x



Structure 2: Low Displacement Rank

ax,y =      1
rx - sy

rx�ax,y - ax,y�sy = 1

s0

sN-1

0
0

r0

rN-1

0
0 1

LA – AR has low 
rank

A A



Known Results

Recurrences
Low Displacement Rank

Driscoll Healy Rockmore

O(N log2 N)

OlshevskyShokrollahi

O(N log2 N)

FFT



Our Main Result*

Recurrences
Low Displacement Rank

Driscoll Healy Rockmore

O(N log2 N)

OlshevskyShokrollahi

O(N log2 N)

FFT

One Result that recovers all existing results*



For more….



Where is the deep learning stuff?

1 Layer : y = g( Ax ) 

Non-linear function

Better accuracy than unconstrained A and with less 
parameters in some image classification tasks



Class of displacement rank ops



Another view



Some copy and paste from paper



“Automatically” learning invariance



For more…



A better source



Questions?

Questions?



Whatever your impression of the 331

IT WAS
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Hopefully it was fun!
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Thanks!
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Except of course, HW 10 and the final exam


