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Quiz 2 is graded

Quiz 2 grade and stats

Quiz 2 has been graded and scores have been released on Autolab.

Here are the stats:

13 20 10 20
5 20 08 20
09 0 09 20
12 0 40
49 50 2.2 0.0

Peer eval grades assigned by SATURDAY

0.0

0.0




Q&A session: Friday lecture



Extra OH on Friday

&
Extra OH on Friday, Dec 7

In prep for the final exam (and In particular, to give y'all an cpportunity 10 pickup HW solutions before the exam), the folowing TAs wil
hoid the following extra OH (all in Salvador Lounge):

* Iman, 11am-1pm
* Angus, 1:30-3pm
o Charles, 3-5pm
¢ Steven, 5-6pm
#pn

office_houny fnal

o [ Usased 4 days 800 by Azt Rudns



Bring UB card to final exam

B8 rowe 0 viows
Assigned seating for final exam

Your seating for the final in Norton 112 will be assigned (and won't be sit where you find a spot as 1 was for the mid-term).

| will release more details by Saturday. In the meantime, two important things 10 remember.

* You will HAVE to have your UB card on you during the exam
o A TA will come and verify that you are seated in the correct row
« To faciitate the TAs checking your UB 1Ds, please keep your bag in the front of the room (Le. not with you).
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Shortest Path Problem

Input: (Directed) Graph G=(V,E) and for every edge e has a cost c, (can be <0)

tinV
Output: Shortest path from everysto t

Assume that
has no negative

Shortest path has cycle
cost negative

infinity

-1000



Bellman-Ford Algorithm

Runs in O(n(m+n)) time

Only needs O(n) additional space



Reading Assighment

Sec 6.8 of [KT]




Longest path problem

Given G, does there exist a simple path of length n-1 ?



Longest vs Shortest Paths




Two sides of the “same” coin

Shortest Path problem

Can be solved by a polynomial time algorithm

Is there a longest path of length n-17?

Given a path can verify in polynomial time if the answer is yes




Poly time alg for longest path?

‘\ -_'
' / Dedicated 10 increasing and disseminating mathematical knowledge

et d ABOUT Om2 FROCRAMSE NEWSE A FYENT AWMARDS OO AR PURLACATIONS

Prize for Resolution of the Poincaré Conjecture AIERAERE
Awarded to Dr. Grigoriy Perelman



P vs NP question

P: problems that can be solved by poly time algorithms

N P: problems that have polynomial time verifiable witness to optimal solution

Alternate NP definition: Guess witness and verify!




Proving P # NP

Pick any one problem in NP and show it cannot be solved in poly time

Pretty much all known
proof techniques

provably will not work




Proving P = NP

Will make cryptography collapse

Compute the
encryption key!

Prove that all problems in NP can be solved by polynomial time algorithms

Solving any ONE

problem in here in
NP-complete

poly time will prove
P=NP! problems




A book on P vs. NP
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High level view of CSE 331

Problem Statement

Problem Definition

e
Three general ‘ O
techniques

Algorithm

“Implementation” Data Structures

Analysis Correctness+Runtime Analysis




If you are curious for more

curious kitteh

CSE 429 or 431: Algorithms

CSE 396: Theory of Computation




Now relax...
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Randomized algorithms

What is different?

Algorithms can toss coins and make decisions

A Representative Problem

Hashing

http://calculator.mathcaptain.com/coin-toss-probability-calculator.html

Further Reading

Chapter 13 of the textbook CSE 430/432 in

Spring 19!




Approximation algorithms

What is different?

Algorithms can output a solution that is say 50% as good as the optimal

A Representative Problem

Vertex Cover

Further Reading

Chapter 12 of the textbook




Online algorithms

What is different?

Algorithms have to make decisions before they see all the input

A Representative Problem

Online Computation
and

Competitive Analysis
Secretary Problem

Allan Borodin Ran El-Yanly

Further Reading




What is different?

https://www.flickr.com/ph

One pass on the input with severely limited memory

A Representative Problem

Compute the top-10 source IP addresses

Further Reading

o




Distributed algorithms

What is different?

Input is distributed over a network e el ek oy )
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Beyond-worst case analysis

What is different?

Analyze algorithms in a more instance specific way

A Representative Problem

Intersect two sorted sets

Further Reading

http://theory.stanford.edu/~tim/f14/f14.html



Algorithms for Data Science

What is different?

Algorithms for non-discrete inputs

A Representative Problem

Compute Eigenvalues

Further Reading

http://research.microsoft.com/en-US/people/kannan/book-no-solutions-aug-21-2014.pdf



Communicating with my 3 year old

Ajg)j C(x) 11—
bl

I

M Ww‘ %

“Code” C

“Kiran English”
C(x) is a “codeword”
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The setup

@?%; Cx) 3 m—
by

(o
Mapping C

Error-correcting code or just code
Encoding: x — C(x)

Decoding: y — X

C(x) is a codeword X Give up

28



Internet

— Checksum used in mult
layers of TCP/IP stack

Cell phones
Satellite broadcast
— TV

Deep space
telecommunications
— Mars Rover
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“Unusual” Channels

* Data Storage
— CDs and DVDs

— RAID & g
- ECC memo ry m ﬂ " ;:s;::::::: B T e
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* Paper bar codes B }:f:::m“:'&fp
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Codes are all around us
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Redundancy vs. Error-correction

* Repetition code: Repeat every bit say 100
times

— Good error correcting properties
— Too much redundancy

* Parity code: Add a parity bit 11100 |1

— Minimum amount of redundancy

10000 |1

— Bad error correcting properties
* Two errors go completely undetected

* Neither of these codes are satisfactory



Two main challenges in coding theory

* Problem with parity example

— Messages mapped to codewords which do not
differ in many places

* Need to pick a lot of codewords that differ a
lot from each other

e Efficient decoding

— Naive algorithm: check received word with all
codewords



The fundamental tradeoff

* Correct as many errors as possible with as
little redundancy as possible

Can one achieve the “optimal” tradeoff with

efficient encoding and decoding ?

33



Interested in more?

CSE 445/545, Spring 2019



Superfast Matrix Vector
MUIt|p||Cat|On (and some deep learning mumbo-jumbo)

ML\
A
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Stanford

University




©(N?) time in worst-case




In practice A has structure

do,o o2 ao,N-1 Xo Yo
3‘) L1
(—
an-1,0aN-1,1 aN-1,N-1 XN-1 YN-1

Can we exploit the structure for

faster algorithms?



Discrete Fourier Transform

doodg2 ao,N-1 bo
an-1,0aN-1,1 AN-1,N-1 PN-1

ayy = exp(21ri x*y/N)

FFT (1965)

Can compute DFT in O(N log N) time




Cauchy Matrix

Can be computed in
O(N log? N) time




Superfast = N poly-log(N)




The main Question

What is the largest class of
matrices A for which we can

have superfast algo to
compute Ax?




Structure 1: Recurrence

ayy = exp(21i x*y/N)

e lexp(21Ti X/N)

ax,y+1 = ax,y

Multiplier only

» o depends oni X
Multiplier :

matrix”
only

depends
on X




Structure 2: Low Displacement Rank

LA — AR has low
rank

il




Known Results

b,

Olshevsky Shokrollahi



Our Main Result™

One Result that recovers all existing resul
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Driscoll Healy Rockmore Olshevsky Shokrollahi




For more....

arXivoorg > ¢s > arXiv:1611.01569

Computer Science > Data Structures and Algorithms

A Two Pronged Progress in Structured Dense Matrix Multiplication

Christopher De Sa, Albert Cu, Rohan Puttagunta, Christopher Ré, Atri Rudra
(Submirred on 4 Nov 2016 (vi), last revised 18 Nov 2017 (tis version, v3i)

Matrix-vector multiplication is one of the most fundamental computing primitives. Given a matrix A € FY" and a vector b, It is known

that in the worst case (N %) operations over F are needed to compute Ab. A broad question |s to identify classes of structured dense
matrices that can be represented with O(N) parameters, and for which matrix-vector multiplication can be performed sub-quadratically.
One such class of structured matrices is the orthogonal polynomial transforms, whose rows correspond to a family of orthogonal
pohmomials. Other well known classes include the Toeplitz, Hankel, Vandermonde, Cauchy matrices and their extensions that are all
speca) cases of a Idisplacement rank property, In this paper, we make progress on two fronts

1. We introduce the notion of recurrence width of matrices. For matrices with constant recurrence width, we design algorithms to
compute Ab and A’ b with a near-linear number of operations. This notion of width is finer than all the above classes of structured
matrices and thus we can compute multiplication for all of them using the same core algonthm,

2. We additionally adapt this algorithm to an algorithm for a much more general class of matrices with displacement structure: those with
low displacement rank with respect to quasiseparable matrices. This class includes Toeplitz-plus-Mankel-like matrices, Discrete
Cosine/Sine Transforms, and more, and captures all previously known matrices with displacement structure that we are aware of under a
urified parametrization and algorithm,

Our work unifies, generalizes, and simplifies existing state-of -the-art resuits in strectured Mmatrix-vector multiphcation, Finally, we show
how applications in areas such as multipoint evaluations of multivariate polynomials can be reduced 10 problems involving low
recurrence width matrices,



Where is the deep learning stuff?
1 Layer:y =g(Ax)

Non-linear function

Better accuracy than unconstrained A and with less
parameters in some image classification tasks




Class of displacement rank ops
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Another view

[A storage [ Av compute]

LDR-TD [O(nr)|O(nrlog”n)




Some copy and paste from paper

MNIST by rot @ MNIST notse
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Figure 3: Test accuracy vs. rank for unstructured, LDR-SD, Toeplitz-like, low-rank classes. On cach dataset, LDR-SD
meets or excoeds the accuracy of the unstructured fully-connected baseline at higher ranks. At rank 16, the compression
ratio of an LDR-SD layer compared to the unstructured layer ranges from 23 to 30. Shaded regions represent two
standard deviations from the mean, computed over five trials with randomly initialized welghts.



“Automatically” learning invariance
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For more...

arXiv.org > ¢s > arXiv:1810.02309

Meip | Advanced

Computer Science > Machine Learning

Learning Compressed Transforms with Low Displacement Rank

Anna 7. Thomas, Albert Cu, Tri Dao, Atri Rudra, Christopher Ré
Sobmutted on 4 Oct 2018

The low displacement rank (LOR) framework for structured matrices represents a matrix through two displacement operators and a low-
rank residual. Existing use of LDR matrices in deep learning has applied fixed displacement operators encoding forms of shift invariance
akin to convolutions. We introduce a rich class of LOR matrices with more general displacement operators, and explicitly learn over both
the operators and the low-rank component. This class generalizes several previous constructions while preserving compression and
efficient computation. We prove bounds on the VC dimension of multi-layer neural networks with structured weight matrices and show
empirically that our compact parameterization can reduce the sample complexity of learning. When replacing weight layers in fully-
connected, convolutional, and recurrent neural networks for image classification and language modeling tasks, our new classes exceed
the accuracy of existing compression approaches, and on some tasks even outperform general unstructured layers while using more than
20X fewer parameters.

Subjects: Machine Learning {cs.LC), Machine Learning (stat ML)
Cihte as.  arXiv:1810,02309 [cs.LC)
(o arXiv:1810,02309v] [¢3.LG) for thes version)

Bibliographic data

[Enatdie Bibex (What i Bibex™)



A better source
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(Dense Structured) Matrix Vector Multiplication

Atri Rudra [Usiversty ot Du®alg, State Universty of New York)

Course Summary | About the jecturer | Location and schoduie | Matarials |
Assignment

Course saommary:

We il study the prodiem of Matrin-velior mulipbcation. 1n paticular, me congMer (he Case
ahen IRe Malrin is Genae and strudtured (DU INe veCclor is arditrary ). We wil stuQy the
rithmetic compiexly of ths 0perdton with the goal of Ioentfyng when we Can perform the
COEration In Near-inedr namber of perations. This 5 8 very fundamental problem that as
many (practical) appicatons. Wile it 15 70t possiSie to cover these appications, we wil use
teD case Btudies 55 mebwvate our study: (1) erer-cormacting codes and (2) (singie layer)
feurhl networss

Aong the way, we sl sty SOma Dice resuls Shat hold for matria-vector muRtioication et
A0 Dertacs ot B2 sel-Enown 28 they Soud Be (or &2 st were Nt KNomn 50 e 4 ‘o
yoars Dock! ). at & DONUA These resuls wil Dualyate sy anIRMels Compiexly 4 4 Nde lens 10 Study Satnx-veltor multiphcston
unoer



Questions?




Whatever your impression of the 331
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Hopefully it was fun!
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Thanks!

Except of course, HW 10 and the final exam
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