Lecture 38

CSE 331
Dec 5, 2018

Quiz 2 is graded

目 note					
Quiz 2 grade and stats					
Quiz 2 has been graded and scores have been released on Autolab.					
Here are the stats:					
Problem	Mean	Median	StdDev	Max	Min
Q1(a)	1.3	2.0	1.0	2.0	0.0
Q1(b)	1.5	2.0	0.8	2.0	0.0
Q2-part 1	0.9	1.0	0.9	2.0	0.0
Q2-part 2	1.2	1.0	1.1	4.0	0.0
Total	4.9	5.0	2.2	10.0	0.0

Quiz 2 grade and stats
Duiz 2 has been graded and scores have been released on Autolab.
Here are the stats:

Peer eval grades assigned by SATURDAY

Q\&A session: Friday lecture

Extra OH on Friday

Extra OH on Friday, Dec 7

In prep for the final exam (and in particular, to give y'all an opportunity to pickup HW solutions before the exam), the following TAs will hold the following extra OH (all in Salvador Lounge):

- Iman, 11am-1pm
- Angus, 1:30-3pm
- Charles, 3-5pm
- Steven, 5-6pm
\#pin
office, hoon final

Bring UB card to final exam

Assigned seating for final exam

Your seating for the final in Norton 112 will be assigned (and won't be sit where you find a spot as it was for the mid-term).
I will release more details by Saturday. In the meantime, two important things to remember:

- You will HAVE to have your UB card on you during the exam
- A TA will come and verify that you are seated in the correct row
- To facilitate the TAs checking your UB IDs, please keep your bag in the front of the room (i.e. not with you).

Shortest Path Problem

Input: (Directed) Graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and for every edge e has a cost c_{e} (can be <0)
t in V

Output: Shortest path from every s to t

Assume that G
has no negative cycle

Bellman-Ford Algorithm

Runs in $\mathrm{O}(\mathrm{n}(\mathrm{m}+\mathrm{n}))$ time

Only needs O(n) additional space

Reading Assignment

Sec 6.8 of [KT]

Longest path problem

Given G , does there exist a simple path of length $\mathrm{n}-1$?

Longest vs Shortest Paths

Two sides of the "same" coin

Shortest Path problem

Can be solved by a polynomial time algorithm

Is there a longest path of length $\mathrm{n}-1$?

Given a path can verify in polynomial time if the answer is yes

Poly time algo for longest path?

Clay Mathematics Institute
 Deticated to incrasing and disseminaning mahematical hnowledge

First Clay Mathematics Institute Millennium Prize Announced
Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman

- Bisch and Siximsitan-Rye Coniecture
- Hodge Conienty in
-Nimer-fitoics Lquations
Cusip

P vs NP question

P: problems that can be solved by poly time algorithms

NP: problems that have polynomial time verifiable witness to optimal solution

Proving $P \neq N P$

Pick any one problem in NP and show it cannot be solved in poly time

Proving $P=N P$

Will make cryptography collapse

Compute the encryption key!

Prove that all problems in NP can be solved by polynomial time algorithms

Solving any ONE problem in here in poly time will prove $\mathrm{P}=\mathrm{NP}$!

A book on P vs. NP

High level view of CSE 331

Data Structures

Correctness+Runtime Analysis

If you are curious for more

CSE 429 or 431: Algorithms

CSE 396: Theory of Computation

curfous limeh

maets

Coarming ounditice

Now relax...

Randomized algorithms

What is different?

Algorithms can toss coins and make decisions

A Representative Problem

Hashing

http://calculator.mathcaptain.com/coin-toss-probability-calculator.html

Further Reading

Chapter 13 of the textbook

CSE 430/432 in Spring 19!

Approximation algorithms

What is different?

Algorithms can output a solution that is say 50% as good as the optimal

A Representative Problem
Vertex Cover

Further Reading
Chapter 12 of the textbook

Online algorithms

What is different?

Algorithms have to make decisions before they see all the input

A Representative Problem

Secretary Problem
Further Reading

Data streaming algorithms

What is different?

https://www.flickr.com/photos/midom/2134991985/
One pass on the input with severely limited memory

A Representative Problem

Compute the top-10 source IP addresses
Further Reading

Distributed algorithms

What is different?

Input is distributed over a network

A Representative Problem
Consensus
Further Reading

Beyond-worst case analysis

What is different?

Analyze algorithms in a more instance specific way
A Representative Problem

Intersect two sorted sets
Further Reading

http://theory.stanford.edu/~tim/f14/f14.html

Algorithms for Data Science

What is different?

Algorithms for non-discrete inputs

A Representative Problem
Compute Eigenvalues
Further Reading

Communicating with my 3 year old

"Code" C
"Kiran English"
$\mathrm{C}(\mathrm{x})$ is a "codeword"

The setup

Mapping C

Error-correcting code or just code Encoding: $x \rightarrow C(x)$
Decoding: $y \rightarrow x$
$C(x)$ is a codeword

Different Channels and Codes

- Internet
- Checksum used in mult layers of TCP/IP stack
- Cell phones
- Satellite broadcast
- TV
- Deep space telecommunications
- Mars Rover

"Unusual" Channels

- Data Storage
- CDs and DVDs
- RAID
- ECC memory

- Paper bar codes
- UPS (MaxiCode)

Codes are all around us

Redundancy vs. Error-correction

- Repetition code: Repeat every bit say 100 times
- Good error correcting properties
- Too much redundancy
- Parity code: Add a parity bit

11100	1

- Minimum amount of redundancy
- Bad error correcting properties

100001

- Two errors go completely undetected
- Neither of these codes are satisfactory

Two main challenges in coding theory

- Problem with parity example
- Messages mapped to codewords which do not differ in many places
- Need to pick a lot of codewords that differ a lot from each other
- Efficient decoding
- Naive algorithm: check received word with all codewords

The fundamental tradeoff

- Correct as many errors as possible with as little redundancy as possible

Can one achieve the "optimal" tradeoff with efficient encoding and decoding ?

Interested in more?

CSE 445/545, Spring 2019

Superfast Matrix Vector
 Multiplication (and some deep learning mumbo-jumbo)

Stanford
University

$A x=y$

$$
\begin{aligned}
& \left.\left[\begin{array}{cccc}
a_{0,0} & a_{0,2} & \cdots \cdots & a_{0, N-1} \\
\vdots & \vdots & & \vdots \\
\vdots & \vdots & & \ldots \\
\vdots & \vdots & \vdots & \vdots \\
\vdots & & & \vdots \\
a_{N-1,0} a_{N-1,1} & \cdots \cdots & a_{N-1, N-1}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
\vdots \\
\vdots \\
\vdots \\
x_{N-1}
\end{array}\right] \quad \square\right] \\
& \text { A } \\
& \text { y }
\end{aligned}
$$

$O\left(N^{2}\right)$ time in worst-case

In practice A has structure

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\mathrm{a}_{0,0} & \mathrm{a}_{0,2} & \cdots . . & \mathrm{a}_{0, \mathrm{~N}-1} \\
\vdots & \vdots & & \vdots \\
\vdots & \vdots & \cdots & \vdots \\
\vdots & \cdots & & \vdots \\
\mathrm{a}_{\mathrm{N}-1,0} \mathrm{a}_{N-1,1} & \cdots . . & \mathrm{a}_{\mathrm{N}-1, \mathrm{~N}-1}
\end{array}\right] \aleph\left[\begin{array}{c}
\mathrm{x}_{0} \\
\vdots \\
\vdots \\
\vdots \\
\mathrm{x}_{\mathrm{N}-1}
\end{array}\right] \quad \square\left[\begin{array}{c}
\mathrm{y}_{0} \\
\vdots \\
\vdots \\
\vdots \\
\mathrm{y}_{\mathrm{N}-1}
\end{array}\right]} \\
& \text { A }
\end{aligned}
$$

Can we exploit the structure for faster algorithms?

Discrete Fourier Transform

Cauchy Matrix

$\left[\begin{array}{cccc}a_{0,0} & a_{0,2} & \cdots \cdots & a_{0, N-1} \\ \vdots & \vdots & & \vdots \\ \vdots & \vdots & \ldots & \vdots \\ \vdots & \vdots & & \vdots \\ a_{N-1,0} a_{N-1,1} & \cdots \cdots & a_{N-1, N-}\end{array}\right] \Uparrow\left[\begin{array}{c}b_{0} \\ \vdots \\ \vdots \\ \vdots \\ b_{N-1}\end{array}\right]$

A b

Can be computed in
 $\mathrm{O}\left(\mathrm{N} \log ^{2} \mathrm{~N}\right)$ time

$$
a_{x, y}=\frac{1}{r_{x}-s_{y}}
$$

Superfast = N poly-log(N)

The main Question

> What is the largest class of matrices A for which we can have superfast algo to compute Ax?

Structure 1: Recurrence

Structure 2: Low Displacement Rank

$$
\begin{gathered}
a_{x, y}=\frac{1}{r_{x}-s_{y}} \\
r_{x} \bullet a_{x, y}-a_{x, y} \bullet s_{y}=1
\end{gathered}
$$

LA - AR has low

 rank

Known Results

Our Main Result*

For more....

Computer Science > Data Structures and Algorithms

A Two Pronged Progress in Structured Dense Matrix Multiplication

Christopher De Sa, Albert Gu, Rohan Puttagunta, Christopher Ré, Atri Rudra

Submitred on 4 Nov 2016 (v1), last revised 18 Nov 2017 (this version, v3i]
Matrix-vector multiplication is one of the most fundamental computing primitives. Given a matrix $A \in F^{N \times N}$ and a vector b, it is known that in the worst case $\Theta\left(N^{2}\right)$ operations over F are needed to compute $A b$. A broad question is to identify classes of structured dense matrices that can be represented with $O(N)$ parameters, and for which matrix-vector multiplication can be performed sub-quadratically. One such class of structured matrices is the orthogonal polynomial transforms, whose rows correspond to a family of orthogonal polynomials. Other well known classes include the Toeplitz, Hankel, Vandermonde, Cauchy matrices and their extensions that are all special cases of a Idisplacement rank property, In this paper, we make progress on two fronts:

1. We introduce the notion of recurrence width of matrices. For matrices with constant recurrence width, we design algorithms to compute $A b$ and $A^{T} b$ with a near-linear number of operations. This notion of width is finer than all the above classes of structured matrices and thus we can compute multiplication for all of them using the same core algorithm.
2. We additionally adapt this algorithm to an algorithm for a much more general class of matrices with displacement structure: those with low displacement rank with respect to quasiseparable matrices. This class includes Toeplitz-plus-Hankel-like matrices, Discrete Cosine/Sine Transforms, and more, and captures all previously known matrices with displacement structure that we are aware of under a unified parametrization and algorithm.
Our work unifies, generalizes, and simplifies existing state-of-the-art results in structured matrix-vector multiplication. Finally, we show how applications in areas such as multipoint evaluations of multivariate polynomials can be reduced to problems involving low recurrence width matrices.

Where is the deep learning stuff?

1 Layer : $y=g(A x)$

Non-linear function

Better accuracy than unconstrained A and with less parameters in some image classification tasks

Class of displacement rank ops

$$
\left[\begin{array}{ccccc}
0 & & \cdots & 0 & f \\
1 & 0 & & \ddots & 0 \\
\vdots & 1 & \ddots & & \vdots \\
0 & \ddots & \ddots & \ddots & \\
0 & 0 & \cdots & 1 & 0
\end{array}\right] \quad\left[\begin{array}{ccccc}
0 & & \cdots & 0 & x_{0} \\
x_{1} & 0 & & \ddots & 0 \\
\vdots & x_{2} & \ddots & & \vdots \\
0 & \ddots & \ddots & \ddots & \\
0 & 0 & \cdots & x_{n-1} & 0
\end{array}\right] \quad\left[\begin{array}{ccccc}
b_{0} & a_{0} & \cdots & 0 & s \\
c_{0} & b_{1} & a_{1} & & 0 \\
\vdots & c_{1} & \ddots & \ddots & \vdots \\
0 & & \ddots & b_{n-1} & a_{n-2} \\
t & 0 & \cdots & c_{n-2} & b_{n-1}
\end{array}\right]
$$

Another view

A storage Av compute

LDR-TD

$$
\begin{array}{|l|l|l|}
\left.\hline O(n r) \log ^{2} n\right) \\
\hline
\end{array}
$$

Toeplitz-like
$O(n r) \mid O(n r \log n)$
Circulant
$O(n) \mid O(n \log n)$
Convolutional filters
$O(n)$
$O(n \log n)$
:---:
$O(n r)\|O(n r) \quad O(n \log n)\| O\left(n \log ^{2} n\right)$

Some copy and paste from paper

Figure 3: Test accuracy vs. rank for unstructured, LDR-SD, Toeplitz-like, low-rank classes. On each dataset, LDR-SD meets or excoeds the accuracy of the unstructured fully-connected baseline at higher ranks. At rank 16, the compression ratio of an LDR-SD layer compared to the unstructured layer ranges from 23 to 30 . Shaded regions represent two standard deviations from the mean, computed over five trials with randomly initialized weights.

"Automatically" learning invariance

(a) Toephtsilke

(b) LDR-SD

(c) Subdingonal of B

(d) Input examplo

For more...

Computer Science > Machine Learning

Learning Compressed Transforms with Low Displacement Rank

Anna T. Thomas, Albert Gu, Tri Dao, Atri Rudra, Christopher Ré

(Submitted on 4 Oct 2018)
The tow displacement rank (LDR) framework for structured matrices represents a matrix through two displacement operators and a lowrank residual. Existing use of LDR matrices in deep learning has applied fixed displacement operators encoding forms of shift invariance akin to convolutions. We introduce a rich class of LDR matrices with more general displacement operators, and explicitly learn over both the operators and the low-rank component. This class generalizes several previous constructions while preserving compression and efficient computation. We prove bounds on the VC dimension of multi-layer neural networks with structured weight matrices and show empirically that our compact parameterization can reduce the sample complexity of learning. When replacing weight layers in fullyconnected, convolutional, and recurrent neural networks for image classification and language modeling tasks, our new classes exceed the accuracy of existing compression approaches, and on some tasks even outperform general unstructured layers while using more than 20X fewer parameters.

```
Subjects: Machine Learning (cs.LG); Machine Learning (stat.MU
Cite as: artov:1810.02309 [cs.LG]
    (or arXiv:1810.02309v1 [cs.LG] for this version)
```


Bibliographic data

[Enable Bibex (What is Hibex7]

A better source

2017/2018 Edition

Schedule of the sessions

(Dense Structured) Matrix Vector Multiplication

Atri Rudra (Univernity at Buflale, State Univershty of New York).

Course Summary | About the lecturer | Lecation and schedule I Naterlals |

 Assignment
Course summary:

We will study the probiem of mabris-vector multiplicasion. In particular, me consider the case whes the matrix is denae and structured (but the vector is arbitrary). We wil study the arithmetic compleaty of this operation with the goal of identifying when we can perform this operation in near-linear number of operations. This is a very fundamental problem that has many (gractical) asplications. While it is not possible to cover these applications, we will ibe tap case studes bo mot vate gur study: (1) embr-cprnecting codes and (2) (aingle iaver) neural networks.

Aong the way, we will study some nice results that hold for matrix-vector mutiplication but
 are pertaps not as meli-known as they should be for at least were not known to the a few years backl): as a bonus these resuta will llasbrate mhy arithmetic domplexty is a rice less to stuty matrix-vector multigtication under.

Questions?

Whatever your impression of the 331

Hopefully it was fun!

Thanks!

Except of course, HW 10 and the final exam

