Lecture 39

CSE 331
Dec 7, 2018

HW10 Solutions

At the end of the lecture

Extra Office Hours today

Extra OH on Friday, Dec 7

In prep for the final exam (and in particular, to give y'all an opportunity to pickup HW solutions before the exam), the following TAs will hold the following extra OH (all in Salvador Lounge):

- Iman, 11am-1 pm
- Angus, 1:30-3pm
- Charies, 3-5pm
- Steven, 5-6pm
\#pin
office, houn
Anal

Location might change as there are events today (check piazza)

Quiz 1 review

(a) (Part 1) Argue why the following statement is TRUE. If $f(n)=c \cdot g(n)$, then $2^{f(n)}=\left(2^{g(n)}\right)^{c}$ for every real number c.

Solution 1

Solution 2

For any $x, y,\left(2^{x}\right)^{y}=2^{x^{*} y}$

This argues why the $2^{\text {nd }}$ equality is true

Q1 (a): part 2

(Part 2) Is the following statement true or false? Also remember to briefly JUSTIFY your answer. If $f(n)$ is $\Theta(g(n))$, then $2^{f(n)}$ is $\Theta\left(2^{g(n)}\right)$.

Q 1(b): part 2

(Part 2) Is the following statement true or false? Also remember to briefly JUSTIFY your answer.
The Gale Shapley algorithm (with women proposing) on such inputs runs in $O(n)$ time.

True False (Please CIRCLE your answer)
Solution 1

The Q is asking about specific inputs and not general inputs

FALSE In class we saw GS runs in $O\left(n^{2}\right)$ time

Solution 2

$$
\begin{aligned}
& \text { Linear time for GS is } \\
& O\left(n^{2}\right)
\end{aligned}
$$

TRUE In class we saw GS is a linear time algorithm

Some other reminders

Re-use as much as possible (remember Q2 on mid-term 2!)

Make sure your references are precise!
If you do everything from scratch you will struggle for time (but less time pressure than mid-terms)

Review all HWs, recitation notes, piazza T/F Qs, Quizzes

All this and much more...

Final exam post

I'll start off with some generic comments:

- The final exam will be besed on all the material we will see in class up to the P vs NP stuff (we'll most likely finish that stuff by Monday, Dec 3 or in the worst-case by Wednesday, Dec 5).
- The lecture on Friday, Dec 7 will be a Q \& A session (where you can ask any 331 related questions)- stay tuned for more detalls.
- Exam will be from 8:30 to 11:00am on Monday, Dec 10 in class (Norton 112). Note that the exam will be for 2.5 hours and not 3 hours as it says on HUB.
* If you have three of more exams scheduled on Dec 10, please contact me NO later than 5PM on Monday, DECEMBER 3. If you contact me after Dec 3, I won't be able to accommodate any re-scheduling request.

Next are comments related to preparing for the finals:

1. Take a look at the sample final (3975) and spend some quality time solving it. Unike the homeworks, it might be better to try to do this on your own. Unlike the sample mid-term, this one is an actual 331 final exam so in addition to the format, you can also gauge how hard the final exam is going to be (your final exam will be the same ballpark). However as with the sample mid-term, you make deductions about the coverage of topics at your own peril (but see points below). Once you have spent time on it on your own, take a look at the sample final solutions (9975).
2. We will have some extra OHs on Friday, Dec 7 (01036).
3. Attend the Q8A session (Friday, Dec 7) in class.
4. The actual final will have the same format as the sample final: The first question will be T / F, 2nd will be T/F with justification, the rest of the three will be longer questions and will ask you to design aigorithms (parts of them might be just analyzing an

Remember to bring your UB card

Assigned seating for final exam

Your seating for the final in Norton 112 will be assigned (and won't be sit where you find a spot as it was for the mid-term).

I will release more details by Saturday. In the meantime, two important things to remember.

- You will HAVE to have your UB card on you during the exam
- A TA will come and verify that you are seated in the correct row
* To faciltate the TAs checking your UB IDs, please keep your bag in the front of the room (i.e. not with you).
\#pin
final

Questions?

