Lecture 5

CSE 331
Sep 7, 2018

HW 1 posted

Homework 1

Due by 11:59pm, Thursday, September 13, 2018
Make sure you follow al the homework policies.
Al subrnissions should be done via Autolab.

Post questions on Piazza!

Some Questions on Stable Matching

Sample Problem

The Problem

Decide whepher the following statement is true or halse:
 the inetance whers (m, w) are matched.

Take note of the many(!) notes

I PDF only please

 entire question. Note that Autolab will NOT give an error message if you sabmit non-POF file, so it is YOUR respensilility to make sure you submit in the oofreot format. Aso the file sian has to be at most 3MB.

Grading Guidelines

1. Preof fides it pointe.
and heee is the Nigh level gradiag nutric lor pert (b)?
2. Preof ides: 17 points for a counterosample idea explaining the insight behind why you think the propety does not hoids.
3. Preof ceteifs: 14 poirts for a complete deserption of a courterexample and a complete proof tor why the given counter example does not have ary stabie nchedule.

I Note

It you do not have separated out proot idea and proof detalls lor part [B], you will pet a zerolof irmespective of the fechrical oorrectnest of your solution.
\square Templates
Don-ibetheny
Dowinand Moriven Word tergitht:

1 Note

You muat explotly list your sources and collaborators when you upioad your submission so Autbiab. None that you can only used one of the fies slowad sources. it you have used a souroe that is not allowed, please do not subme your homework. if you did not consult miny souroe or did not collaborabe with aryone just say Nose.

Various lecture related stuff

Can you guess the correlation?

Fall 2012

Fall 2013

Fall 2014

Another comment

Discomfort with proofs

I will not cover proof basics in class

Please read support pages and talk to us in person if you need help

Lecture pace

Mid-term

We're not mind readers

If you need it, ask for help

Peer Notetaker Request

Peer Notes Request

A student in your class is eligible for the services of a Peer Notetaker. Notetakers provide an essential service that helps ensure equal access to education for students who receive accommodations. Notetakers who qualify may also be paid a stipend by Accessibility Resources at the end of the semester. If you are interested in becoming a Peer Notetaker for this course, please contact 716-645-2608 or stu-notesBbuffalo.edu as soon as possible. Notetakers are accepted on a first come, first serve basis.
(If you do end up volunteering for being a peer notetaker, please also let me know so that I know I do not have to send more reminders. \therefore Atn)
Ipin
logistics inctures

Sign-up for mini projects
 Deadline: Monday, Sep 24, 11:59pm

CSE 331

Fall 2018

CSE 331 Mini project choices

Fall 2018

Please check the table below before subrnitting your mini project team compostion to make sure your case study is not being used by another group. Case studies are assigned on a frst come frst serve basis.

Questions/Comments?

Stable Marriage problem

Stable matching $=$ perfect matching+ no instablity

Two Questions

Does a stable marriage always exist?

If one exists, how quickly can we compute one?

Today's lecture

Naïve algorithm

Gale-Shapley algorithm for Stable Marriage problem

The naïve algorithm

Incremental algorithm to produce all n ! prefect matchings?

Go through all possible perfect matchings S

If S is a stable matching
then Stop

Else move to the next perfect matching

Gale-Shapley Algorithm

Moral of the story...

Questions/Comments?

Rest of today's agenda

Run of GS algorithm on an instance

Prove correctness of the GS algorithm

Gale-Shapley Algorithm

Intially all men and women are free
While there exists a free woman who can propose
Let w be such a woman and m be the best man she has not proposed to
w proposes to m
If m is free
(m, w) get engaged
Else (m, w^{\prime}) are engaged
If m prefers w ' to w
w remains free
Else
(m, w) get engaged and w ' is free
Output the engaged pairs as the final output

Preferences

.

GS algorithm: Firefly Edition

Haxam	
Rex	Praxa
ำต	Praxay

Observation 1

Intially all men and women are free
While there exists a free woman who can propose
Let w be such a woman and m be the best man she has not proposed to w proposes to m

If m is free

$$
(m, w) \text { get engaged }
$$

Else ($\mathrm{m}, \mathrm{w}^{\prime}$) are engaged
If m prefers w ' to w
w remains free
Else
Once a man gets engaged, he remains engaged (to "better" women)

Output the engaged pairs as the final output

Observation 2

Intially all men and women are free
While there exists a free woman who can propose
Let w be such a woman and m be the best man she has not proposed to
w proposes to m
If m is free
(m, w) get engaged
Else (m, w^{\prime}) are engaged
If m prefers w ' to w w remains free
Else

$$
(m, w) \text { get engaged and w' is free }
$$

Output the set S of engaged pairs as the final output

Questions/Comments?

Why bother proving correctness?

Consider a variant where any free man or free woman can propose

Is this variant any different? Can you prove it?

GS' does not output a stable marriage

