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If you need it, ask for help



Mini Project group due next 
Monday!

Around 180 of you still need to do this! 



Connectivity Problem

Input: Graph G = (V,E) and s in V

Output: All t connected to s in G



Breadth First Search (BFS)

Build layers of vertices connected to s

L0 = {s}

Assume L0,..,Lj have been constructed

Lj+1 set of vertices not chosen yet but are connected to Lj

Stop when new layer is empty



BFS Tree
BFS naturally defines a tree rooted at s

Lj forms the jth “level” in the tree

u in Lj+1 is child of v in Lj from which it was “discovered”
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Two facts about BFS trees

All non-tree edges are in the same or consecutive layer

If u is in Li then dist(s,u) = i



Today’s agenda

Computing Connected component



Computing Connected Component

Start with R = {s}

While exists  (u,v) edge v not in R and u in R

Add v to R

Output R* = R

Explore(s)



Questions?



BFS

all



Depth First Search (DFS)

http://xkcd.com/761/



DFS(u)

Mark u as explored and add u to R

For each  edge (u,v)

If v is not explored then DFS(v)



Why is DFS a special case of 
Explore?



DFS(u)

u is explored

For every unexplored
neighbor v of u

DFS(v)

A DFS run
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Questions?



Connected components are disjoint

Either Connected components of s and t are the same or are disjoint

Algorithm to compute 
ALL the connected 

components?

Run BFS on some node s. Then run BFS on t that is not connected to s


