Lecture 12

CSE 331 Sep 23, 2019

If you need it, ask for help

Mini Project group due next Monday!

CSE 331 Mini project choices

Fall 2019

Please check the table below before submitting your mini project team composition to make sure your case study is not being used by another group. Case studies are assigned on a first come first serve basis.

Around 180 of you still need to do this!

Group	Chosen Algorithm	Case Study	Links
Daniel Shekhtman, William Nicholson, Andrew Quinonez (D's Get Degrees)	PageRank	Manipulation of PageRank for nefarious purposes	Link 1, Link 2, Link 3, Link 4
Jordan Clemons, Chris Burton, Christopher Perez (Group 1)	Pagerank	Google's use of Pagerank in sorting search results	Link 1, Link 2
Moulid Ahmed, Shrishty Shivani Jha, Shreya Lakhkar (ACE-MA)	Spotify Recommendation	Machine Learning Algorithm	Link 1, Link 2, Link 3
Justin Henderson, Hannah Wlasowicz, Judy Mei (PizzaTime)	Aes 256	ransomware	Link 1
Gillian Marcus, Jason Niu, Sharon Stack (2n^2 (//pls substitute caret for a superscript))	Deep Neural Networks for YT Recommendations	Social Media Targeted Advertising	Link 1, Link 2, Link 3, Link 4
Jiwon Choi, Matthew Ferrera, Winnie Zheng (The	Dijkstra's Algorithm	Maps/ Transportation Routes	Link 1, Link 2,

Connectivity Problem

Input: Graph G = (V,E) and s in V

Output: All t connected to s in G

Breadth First Search (BFS)

Build layers of vertices connected to s

 $L_0 = \{s\}$

Assume $L_0,...,L_i$ have been constructed

 L_{i+1} set of vertices not chosen yet but are connected to L_i

Stop when new layer is empty

BFS Tree

Two facts about BFS trees

All non-tree edges are in the same or consecutive layer

If u is in L_i then dist(s,u) = i

Today's agenda

Computing Connected component

Computing Connected Component

Explore(s)

Start with R = {s}

While exists (u,v) edge v not in R and u in R

Add v to R

Output $R^* = R$

Questions?

BFS

Depth First Search (DFS)

I REALLY NEED TO STOP USING DEPTH-FIRST SEARCHES.

DFS(u)

Mark u as explored and add u to R

For each edge (u,v)

If v is not explored then DFS(v)

Why is DFS a special case of Explore?

Questions?

Connected components are disjoint

Either Connected components of s and t are the same or are disjoint

Run BFS on some node s. Then run BFS on t that is not connected to s