
Lecture 14

CSE 331
Sep 27, 2019

If you need it, ask for help

Mini Project group due Monday!

The chosen list updates ~2 days

HW 4 out

HW 3 Solutions

At the end of the lecture

Graded HW 2

Hopefully by tonight

Questions?

Use CC[v] array

Lj+1 set of vertices not chosen yet but are connected to Lj

Use linked lists

Breadth First Search (BFS)

Build layers of vertices connected to s

L0 = {s}

Assume L0,..,Lj have been constructed

Stop when new layer is empty

Rest of Today’s agenda

Quick run time analysis for BFS

Helping you schedule your activities for the day

Quick run time analysis for DFS (and Queue version of BFS)

O(m+n) BFS Implementation

BFS(s)

CC[s] = T and CC[w] = F for every w≠ s

Set i = 0
Set L0= {s}

While Li is not empty

Li+1 = Ø

For every u in Li

For every edge (u,w)

If CC[w] = F then

CC[w] = T
Add w to Li+1

i++

Array

Linked List

Input graph as
Adjacency list

Version in KT
also

computes a
BFS tree

All the layers as one

BFS(s)

CC[s] = T and CC[w] = F for every w≠ s

Set i = 0
Set L0= {s}

While Li is not empty

Li+1 = Ø

For every u in Li

For every edge (u,w)

If CC[w] = F then

CC[w] = T
Add w to Li+1

i++

All layers are
considered in first-
in-first-out order

Can combine all layers
into one queue: all the
children of a node are

added to the end of the
queue

An illustration

1

2 3

4 5

6

7

8

1 2 3 4 5 7 8 6

Queue O(m+n) implementation

BFS(s)

CC[s] = T and CC[w] = F for every w≠ s

Intitialize Q= {s}

While Q is not empty

Delete the front element u in Q

For every edge (u,w)

If CC[w] = F then

CC[w] = T
Add w to the back of Q

O(n)

O(1)

O(1)

Repeated nu times

O(nu)

Repeated at most
once for each

vertex u

Σu O(nu) =
O(Σu nu) =

O(m)
O(1)

Questions?

Implementing DFS in O(m+n) time

Same as BFS except stack instead of a queue

A DFS run using an explicit stack

1

2 3

4 5

6

7

8

1

2

4

5

6

3

8

7

3

5

3

7

DFS stack implementation

DFS(s)

CC[s] = T and CC[w] = F for every w≠ s

Intitialize Ŝ = {s}

While Ŝ is not empty

Pop the top element u in Ŝ

For every edge (u,w)

If CC[w] = F then

CC[w] = T
Push w to the top of Ŝ

Same
O(m+n) run

time analysis
as for BFS

Questions?

Reading Assignment
Sec 3.3, 3.4, 3.5 and 3.6 of [KT]

Directed graphs

Model asymmetric relationships

Precedence relationships

u needs to be done before w means (u,w) edge

Directed graphs
Adjacency

matrix is not
symmetric

Each vertex has two
lists in Adj. list rep.

Directed Acyclic Graph (DAG)

No directed cycles

Precedence
relationships are

consistent

Topological Sorting of a DAG

Order the vertices so that all edges go “forward”

Probabilistic Graphical Models (PGMs)

H

D

S

E
http://ginaskokopelli.com/wp-content/uploads/2013/01/DiaperDealsLogo.jpg

fS|E(s,e) = Pr[S=s|E=e]

S E fS|E

1 1 0.8
1 0 0.3
0 1 0.2
0 0 0.7

fH|D,S(h,d,s) × fS|E(s,e)
× fD|E(d,e) × fE(e)

Σ
d,s,e

φ (h) =

More details on Topological sort

Questions?

Main Steps in Algorithm Design
Problem Statement

Algorithm

Problem Definition

“Implementation”

Analysis

n!

Correctness+Runtime Analysis

Data Structures

Where do graphs fit in?
Problem Statement

Algorithm

Problem Definition

“Implementation”

Analysis Correctness+Runtime Analysis

Data Structures

A tool to define
problems

Rest of the course*
Problem Statement

Algorithm

Problem Definition

“Implementation”

Analysis Correctness+Runtime Analysis

Data Structures

Three general
techniques

Greedy algorithms

Build the final solution piece by piece

Being short sighted on each piece

Never undo a decision

Know when you see it

End of Semester blues

Sunday Monday Tuesday Wednesday Thursday

Project

331 homework 331 HWExam study

Party!

Write up a term paper

Can only do one thing at any day: what is the
maximum number of tasks that you can do?

The optimal solution

Monday Tuesday Wednesday Thursday Friday

331 HWExam study

Party!

Can only do one thing at any day: what is the
maximum number of tasks that you can do?

Interval Scheduling Problem

Input: n intervals [s(i), f(i)) for 1≤ i ≤ n

Output: A schedule S of the n intervals

No two intervals in S conflict

|S| is maximized

{ s(i), … ,f(i)-1 }

Algorithm with examples

Example 1
No intervals overlap

Algorithm?
No intervals overlap

R: set of requests

Set S to be the empty set

While R is not empty

Choose i in R

Add i to S

Remove i from R

Return S*= S

Example 2
At most one overlap

Algorithm?
At most one overlap

R: set of requests

Set S to be the empty set

While R is not empty

Choose i in R

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Remove i from R

Example 3

Task 1

Task 2Task 3

Task 4 Task 5

Set S to be the empty set

While R is not empty

Choose i in R
Add i to S

Remove all tasks that conflict with i from R

Return S*= S

More than one conflict

Greedily solve your blues!

Monday Tuesday Wednesday Thursday Friday

Project

331 HWExam study

Party!

Write up a term paper

Arrange tasks in some order and iteratively pick non-
overlapping tasks

Making it more formal

Task 1

Task 2Task 3

Task 4 Task 5

Set S to be the empty set

While R is not empty

Choose i in R
Add i to S

Remove all tasks that conflict with i from R

Return S*= S

More than one conflict

Associate a
value v(i)
with task i

Choose i in R that minimizes v(i)

What is a good choice for v(i)?

Task 1

Task 2Task 3

Task 4 Task 5

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

More than one conflict

Associate a
value v(i)
with task i

Choose i in R that minimizes v(i)

v(i) = f(i) – s(i)

Task 1

Task 2Task 3

Task 4 Task 5

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Smallest duration first

Choose i in R that minimizes f(i) – s(i)

v(i) = s(i)

Task 1

Task 2Task 3

Task 4 Task 5

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Earliest time first?

Choose i in R that minimizes s(i)

So are we
done?

Not so fast….

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Earliest time first?

Choose i in R that minimizes s(i)

Task 1

Task 2Task 3

Task 4 Task 5

Task 6

Pick job with minimum conflicts

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Choose i in R that has smallest number of conflicts

Task 1

Task 2Task 3

Task 4 Task 5

Task 6

So are we
done?

Nope (but harder to show)

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Choose i in R that has smallest number of conflicts

Task 1

Task 2Task 3

Task 4 Task 5

Task 6

Task 7

Task 8 Task 9 Task 10 Task 11

Task 13 Task 14

Task 17

Task 16

Task 12

Task 15

Task 18

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Choose i in R that has smallest number of conflicts

Task 1

Task 2Task 3

Task 4 Task 5

Task 6

Task 7

Task 8 Task 9 Task 10 Task 11

Task 13 Task 14

Task 17

Task 16

Task 12

Task 15

Task 18

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Choose i in R that minimizes v(i)

Algorithm?

Task 1

Task 2Task 3

Task 4 Task 5

Task 6

Task 7

Task 8 Task 9 Task 10 Task 11

Task 13 Task 14

Task 17

Task 16

Task 12

Task 15

Task 18

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Choose i in R that minimizes f(i)

Earliest finish time first

Task 1

Task 2Task 3

Task 4 Task 5

Task 6

Task 7

Task 8 Task 9 Task 10 Task 11

Task 13 Task 14

Task 17

Task 16

Task 12

Task 15

Task 18

Set S to be the empty set

While R is not empty

Add i to S

Remove all tasks that conflict with i from R

Return S*= S

Choose i in R that minimizes f(i)

Find a counter-example?

It
works!

Questions?

Today’s agenda

Prove the correctness of the algorithm

Final Algorithm

R: set of requests

Set S to be the empty set

While R is not empty

Choose i in R with the earliest finish time

Add i to S

Remove all requests that conflict with i from R

Return S*= S

