Lecture 18

CSE 331
Oct 7, 2019

Quiz starts at 1 pm and ends at 1:10pm

Lecture starts at $1: 15 \mathrm{pm}$

Problem 1 on Coding project

Problem 1 on Coding Project is now live!

Apologies again for the delay in getting this done but Autolab is now accepting submissions for Problem 1 for the coding project. The coding project webpage has been updated with the required coding details:
http://www-student.cse.buffalo.edu/~atri/cse331/fall19/coding-project/index.html

Few things to keep in mind:

- This is group submission-- please see the webpage for instructions on how to do so. Please follow the instructions EXACTLY. Not following the instructions might make the group submission on Autolab not behave as intended.
- Problem 1 is easy ONCE you have understood what the problem is asking and you familiarize yourself with the template structure. You literally need to add a couple of lines of code to get FULL points.
- If you are using C++, please note that the provided code is a bit slow. Running the correct Solution takes a 1 min to 1.5 mins, which is definitely slow. The issue is at our end and we are working on fixing it.
- You can definitely submit your solutions in the meantime (it'll just take a bit to run).
- We'll put out an update once this is fixed (this change will not affect your code at all).
\#pin
coding_mini_project

Shortest Path Problem

Another more important application

Is BGP a known acronym for you?

Routing uses shortest path algorithm

Shortest Path problem

Input: Directed graph G=(V,E)
Edge lengths, I_{e} for e in E

"start" vertex s in V

Output: Length of shortest paths from s to all nodes in \vee

Dijkstra's shortest path algorithm

Towards Dijkstra's algo: part ek

Determine $\mathrm{d}(\mathrm{t})$ one by one

$$
d(s)=0
$$

Towards Dijkstra's algo: part do

Determine $\mathrm{d}(\mathrm{t})$ one by one

Let u be a neighbor of s with smallest $\left.\right|_{(s, u)}$

$$
\mathrm{d}(\mathrm{u})=\mathrm{I}_{(\mathrm{s}, \mathrm{u})}
$$

Length of ~ 0
Not making any claim on other vertices

Towards Dijkstra's algo: part teen

Determine $\mathrm{d}(\mathrm{t})$ one by one

Assume we know $d(v)$ for every v in R

Compute an upper bound d'(w) for every w not in R

$$
\begin{aligned}
& d(w) \leq d(u)+l_{(u, w)} \\
& d(w) \leq d(x)+I_{(x, w)} \\
& d(w) \leq d(y)+I_{(y, w)}
\end{aligned}
$$

$$
d^{\prime}(w)=\min _{e=(u, w) \text { in } E, u \text { in } R} d(u)+l_{e}
$$

Dijkstra's shortest path algorithm

Input: Directed $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{I}_{\mathrm{e}} \geq 0$, s in V
$R=\{s\}, d(s)=0$
While there is a x not in R with (u, x) in E, u in R
Pick w that minimizes $d^{\prime}(w)$
Add w to R
$d(w)=d^{\prime}(w)$
$d^{\prime}(w)=\min _{e=(u, w) \text { in } E, u \text { in } R} d(u)+l_{e}$
$d(s)=0$
$d(u)=1$
$d(w)=2$
$d(x)=2$
$d(y)=3$
$d(z)=4$

Couple of remarks

The Dijkstra's algo does not explicitly compute the shortest paths

Can maintain "shortest path tree" separately

Dijkstra's algorithm does not work with negative weights

Left as an exercise

Rest of Today's agenda

Prove the correctness of Dijkstra's Algorithm

Runtime analysis of Dijkstra's Algorithm

