Lecture 20

CSE 331
Oct 11, 2019

SEAS scholarships

note
\section*{SEAS Scholarships}
Y'all should have received an email from Christine Human on this but I'd like to encourage y'all to apply as well!
Deadline is October 21 and here is the URL: https://buffalo.academicworks.com/

HW 5 solutions

At the end of the lecture

Extra OH today

Extra Friday OH

A gentle reminder that you will be able to pickup solutions to all HWs (1-5) during the office hours this Friday (all in Salvador Lounge):

- Elijah (as usual) will have his $\mathrm{OH} 3-4: 10 \mathrm{pm}$ (note the extra 20 mins beyond the usual $3: 50 \mathrm{pm}$ stop).
- Nick will have a special OH 5-5:50pm.

We might add another OH earlier in the day: I'll update this post in case we are able to do so.
\#pin
mid-term office_hours

Graded HW 4 and Quiz 1

Planning for tonight

Mid-term-I on Monday

1-1:50pm in this place

If you can reference away a Q, do it!

Minimum Spanning Tree Problem

Input: Undirected, connected $G=(V, E)$, edge costs c_{e}
Output: Subset $\left.E^{\prime} \subseteq E\right)$, s.t. $T=\left(V, E^{\prime}\right)$ is connected $C(T)$ is minimized

If all $c_{e}>0$, then T is indeed a tree

Today's agenda

Greedy algorithm(s) for MST problem

Kruskal's Algorithm

Input: $G=(V, E), c_{e}>0$ for every e in E

$$
T=\varnothing
$$

Sort edges in increasing order of their cost

Consider edges in sorted order

Joseph B. Kruskal

If an edge can be added to T without adding a cycle then add it to T

Prim's algorithm

Similar to Dijkstra's algorithm

Robert Prim

Input: $G=(V, E), c_{e}>0$ for every e in E $S=\{s\}, T=\varnothing$

While S is not the same as V

Among edges $e=(u, w)$ with u in S and w not in S, pick one with minimum cost
Add w to S, e to T

Reverse-Delete Algorithm

Input: $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{c}_{\mathrm{e}}>0$ for every e in E

$$
\mathrm{T}=\mathrm{E}
$$

Sort edges in decreasing order of their cost

Consider edges in sorted order
If an edge can be removed T without disconnecting T then remove it

(Old) History of MST algorithms

1920: Otakar Borůvka

1957: Prim
1959: Dijkstra

