
Lecture 20

CSE 331 Oct 11, 2019

SEAS scholarships

HW 5 solutions

At the end of the lecture

Extra OH today

note 🚖	stop following	87 views
Extra Friday OH		
A gentle reminder that you will be able to pickup solutions to all HWs (1-5) during the office hours this Friday (all in Salvador Lounge):		
 Elijah (as usual) will have his OH 3-4:10pm (note the extra 20 mins beyond the usual 3:50pm stop). Nick will have a special OH 5-5:50pm. 		
We <i>might</i> add another OH earlier in the day: I'll update this post in case we are able to do so. #pin		
mid-term office_hours		
edit good note 0	Updated 22 hours ago	by Atri Rudra

Graded HW 4 and Quiz 1

Planning for tonight

Mid-term-I on Monday

1-1:50pm in this place

If you can reference away a Q, do it!

Minimum Spanning Tree Problem

Input: Undirected, connected G = (V, E), edge costs c_e

Output: Subset $E' \subseteq E$), s.t. T = (V, E') is connected C(T) is minimized

If all c_e > 0, then T is indeed a tree

Today's agenda

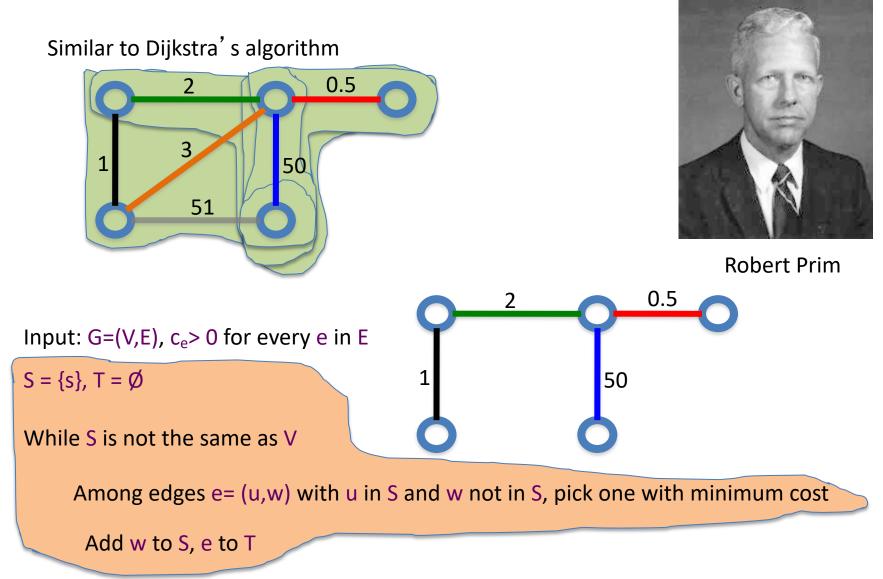
Greedy algorithm(s) for MST problem

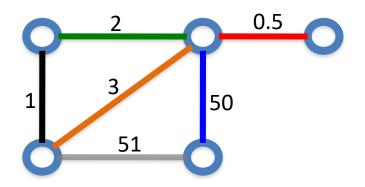
Kruskal's Algorithm

Input: G=(V,E), $c_e > 0$ for every e in E

 $T = \emptyset$

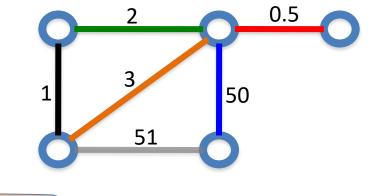
Sort edges in increasing order of their cost


Consider edges in sorted order


Joseph B. Kruskal

If an edge can be added to T without adding a cycle then add it to T

Prim's algorithm


Reverse-Delete Algorithm

Input: G=(V,E), $c_e > 0$ for every e in E

T = E

Sort edges in decreasing order of their cost

Consider edges in sorted order

If an edge can be removed T without disconnecting T then remove it

(Old) History of MST algorithms

1920: Otakar Borůvka

1957: Prim

1959: Dijkstra

1956: Kruskal