
Lecture 31

CSE 331
Nov 11, 2019

HW 8 Q3 reminder

When to use Dynamic Programming

There are polynomially many sub-problems

Optimal solution can be computed from solutions to sub-problems

There is an ordering among sub-problem that allows for iterative solution

Richard BellmanOPT(1), …, OPT(n)

OPT(j) = max { vj + OPT(p(j)), OPT(j-1) }

OPT (j) only depends on OPT(j-1), …, OPT(1)

Scheduling to min idle cycles

n jobs, ith job takes wi cycles

What is the maximum number of cycles you can schedule?

You have W cycles on the cloud

Subset sum problem

n integers w1, w2, …, wnInput:

bound W

Output: subset S of [n] such that

(1) sum of wi for all i in S is at most W

(2) w(S) is maximized

Questions?

Today’s agenda

Dynamic Program for Subset Sum problem

Recursive formula

OPT(j, B) = max value out of w1,..,wj with bound B

If wj > W’

OPT(j, B) = OPT(j-1, B)

else

OPT(j, B) = max { OPT(j-1, B), wj + OPT(j-1,B-wj) }

Shortest Path Problem

Input: (Directed) Graph G=(V,E) and for every edge e has a cost ce (can be <0)

t in V

Output: Shortest path from every s to t

1 1

100

-1000

899

s t

Shortest path has
cost negative

infinity

Assume that G
has no negative

cycle

May the Bellman force be with you

