Lecture 4

CSE 331
Sep 4, 2019

Please do keep on asking Qs!

The only bad question is the one that is not asked!

Not just technical Qs but also on how the class is run

We're not mind readers

If you need it, ask for help

Read the syllabus CAREFULLY!

No graded material will be handed back till you pass the syllabus quiz!

Syllabus Quiz

Acadenic integrity

Separate Proof idea/proof details

- liain4

Pront Itay

Houlprian

 Erfill

TA office hours finalized

TA office hours finalized

The Phifortoun me frationt

 Ander.ment

The Ow nel utuh lon laminy

Office hours for proofs

This week Tue-Th office hours are for proots!

 ogin
ethanern

[^0]
1-on-1 appointments

Appointments

Instructions for booking appointments

One

[^1]

Makeup recitations

TODAY, 12-12:50pm in Davis 113A

TOMORROW, 11-11:50am in Davis 113A

Sign-up for mini projects

Deadline: Monday, Sep 23, 11:00am

CSE 331 Video Mir choices

Fall 2019

Questions/Comments?

Peer notetaker request

Tinaly

Peer notetaher mopent
H2n.
 nilninter

Tyer
in

 tre mean tent

Seemintun
myn

E-Hem
intracity e intin
Bifle mer sen
日rintine
nimatins

Incorrect Proof Details: Q1(b) on

Argument does not

 use ANYTHING about the problem statement!Base case: $P(1)=1!=1$ HWO

This assumes number of perfect matchings only depends on n

Inductive hypothesis: Assume that $P(n-1)=(n-1)$!

Inductive step: Note that $P(n)=n * P(n-1)=n^{*}(n-1)!=n!$

What are the issues with the above "proof"?

Incorrect Proof Details: Q1(b) on

Claim 1: Number of perfect matchings is = number of permutations of 1...n

Claim 2: Number of permutations of $1 \ldots \mathrm{n}$ is n !

Claims $1+2$ prove the result
Needs justification

Follow from 191 (?)

What are the issues with the above proof?

Proof by contradiction for Q1(a)

Assume for contradiction there is an example where number of perfect matchings depends on the identities of the mu and women.

Let $\mathrm{n}=1$ and consider two cases
(1) $M=\{B P\}$ and $W=\{J A\}$
(2) $M=\{B B T\}$ and $W=\{A J\}$

You can only assume things about the example directly implied by it being a counter-example

In both cases the number of perfect matchings is $1=1$!

Hence contradiction. There is NO contradiction

What are the issues with the above proof?

Questions/Comments?

On matchings

A valid matching

Not a matching

Perfect Matching

Back to couple more definitions

Preferences

.

 $\left(\mathrm{c}^{2} \mathrm{a}\right)$

Instability

-A stable marriage

Two stable marriages

ar

톰
-
0 0

Stable Marriage problem

Stable matching $=$ perfect matching+ no instablity

Questions/Comments?

Two Questions

Does a stable marriage always exist?

If one exists, how quickly can we compute one?

Today's lecture

Naïve algorithm

Gale-Shapley algorithm for Stable Marriage problem

Discuss: Naïve algorithm!

The naïve algorithm

Incremental algorithm to produce all n ! prefect matchings?

Go through all possible perfect matchings S

If S is a stable matching
then Stop

Else move to the next perfect matching

Gale-Shapley Algorithm

David Gale

Lloyd Shapley

Moral of the story...

Questions/Comments?

[^0]:

[^1]:

