
NAME:

CSE 331
Introduction to Algorithm Analysis and Design
Sample Final Exam Solutions: Fall 2021

Atri Rudra November 27, 2021

DIRECTIONS:

• Closed Book, Closed Notes except for two 8 1
2

"× 11"

review sheet.

• Time Limit: 2 hours 30 minutes.

• Answer the problems on the exam paper.

• Each problem starts on a new page.

• Make sure you write your NAME on the paper.

• If you need extra space use the back of a page.

• Problem 6 is a bonus problem.

• Keep your desk clear of everything else other than

the exam paper, review sheets and writing imple-

ments.

1 /10

2 /30

3 /25

4 /20

5 /15

6 /2

Total /100

Bonus /2

FEW GENTLE REMINDERS/SUGGESTIONS:

• You can quote any result that we covered in class or any problem that was there in a homework (but re-

member to explicitly state where you are quoting a result from).

• If the question does not specifically ask for a formal proof, just a correct proof idea should fetch you at least

80% of the points.

• If you get stuck on some problem for a long time, move on to the next one.

• The ordering of the problems is somewhat related to their relative difficulty. However, the order might be

different for you!

• You should be better off by first reading all questions and answering them in the order of what you think is

the easiest to the hardest problem. Keep the points distribution in mind when deciding how much time to

spend on each problem.

• Spend time on the bonus problem only if you are done with the rest of the exam.

• Finally, relax and enjoy the exam! (If not, think of a time when you’ll be done with 331!)

1

1. (5× 2 = 10 points) Answer True or False to the following questions. No justification is

required. (Recall that a statement is true only if it is logically true in all cases while it is

false if it is not true in some case).

(We provide the justification, even though it is not required, for you convenience.)

(a) BFS is a linear time algorithm.

TRUE BFS runs in time O(n +m) and the input size (i.e. the graph) is also Θ(n +m).

(b) Every undirected connected graph on n vertices has exactly n −1 edges.

FALSE (3.2) Consider G that is a cycle.

(c) If all the edge weights of an undirected connected graph G are distinct, then G has a

unique minimum spanning tree.

TRUE This I had mentioned in class but here is a very hand wavy proof idea: say

there are two distinct MSTs T1 and T2 and let e be the largest weighted edge that is

present in one but not the other (WLOG say it is in T1). Then the claim is that one

can remove e and replace it with and edge e ′ in T2 \ T1. The claim follow by arguing

that T \ {e}∪ {e ′} is a spanning tree and that ce ′ < ce .

(d) Given n numbers a1, . . . , an , the median of the smallest ten numbers and the largest

ten numbers among them can be computed in O(n) time.

TRUE With a linear scan one can compute the smallest and largest ten numbers.

Then the median of the 20 numbers can be found in O(1) time.

(e) The maximum spanning tree problem (i.e. given a connected undirected weighted

graph output a spanning tree with the maximum weight) is an NP-complete prob-

lem. (Recall that we have shown that the minimum spanning tree problem is in P.)

FALSE Consider the related graph instances where the edge weights are −ce (where

ce are the original costs) and then run Kruskal’s algorithm, which gives a polynomial

time algorithm and hence the maximum spanning tree problem is in P.

2. (5×6 = 30 points) Each of the questions below has two parts. For the first part, you need

to give a justification for the statement and is worth 2 points. For the second part, answer

True or False and briefly JUSTIFY your answer. A correct answer with no or totally incor-

rect justification will get you 1 out of the total 4 points. An incorrect answer irrespective

of the justification will get you 0 out of 4 points. You can assume part 1 when answering

part 2 but to get credit for part 1, you have to answer part 1. (Recall that a statement is

true only if it is logically true in all cases while it is is false if it is not true in some case).

(a) (Part 1) This follows since for any real numbers a,b,c we have (ab)c = ab·c .

(Part 2) 2O(n) is O(2n). (Or more precisely, every function f (n) that is 2O(n) is also

O(2n).)

FALSE Consider f (n) = 4n . Note that f (n) = 22n = 2O(n) but it is not O(2n). (A quick

way to see this note that limn→∞ 4n/2n =∞.)

(b) (Part 1) Use mergesort and note that since each ai can be represented with O(logn)

bits, we can compare any pair of them in O(1) time.

2

(Part 2) Given n numbers a1, . . . , an , where for every 1 ≤ i ≤ n, ai ∈ {−5,9,100}; their

sorted order can be output in O(n) time.

TRUE Do a linear scan of the numbers and construct three lists: one each for every

ai equal to −5, 9 or 100. The final sorted output is to output the lists for −5,9 and

100 in that order.

(c) (Part 1) This follows from HW 6 Q2 and the fact that log3 5 < 3/2.

(Part 2) Given two numbers with n octal digits (i.e. the numbers are in base 8), they

cannot be multiplied in time asymptotically faster than O(n2).

FALSE The algorithm we saw in class (that runs in time O(nlog2 3) works for any base

that is constant. Thus we can multiply octal number faster than O(n2) time.

(d) (Part 1) Use Dijkstra’s algorithm (and note that since all weights are O(logn) bits, all

arithmetic operations in the algorithm can be implemented in O(1) time).

(Part 2) Given an undirected unweighted graph G in n vertices and m edges and two

distinct vertices s 6= t , the shortest s − t path can be computed in O(m +n) time.

TRUE Run BFS on G starting with s. The shortest path between s and t is the unique

path between them in the BFS tree.

(e) (Part 1) Since all edge weights are 1 and all spanning trees have n−1 edges, it implies

that all spanning trees have cost exactly n −1. Thus, all spanning trees (including a

BFS tree) are MSTs.

(Part 2) Let G be an undirected connected graph. If G has a unique minimum span-

ning tree, then all the edge weights in G are distinct.

FALSE. Consider the graph

u

s t

1 1

3. (25 points) You’re given the Internet as a graph G = (V ,E) such that |V | = n and |E | = m.

Further for each edge e ∈ E , you’re given it’s probability 0 ≤ pe ≤ 1 that it’ll transmit a

packet (or equivalently, it is the probability it will not fail). Further, the probabilities are

independent, i.e. given a path with edges e1, . . . ,eℓ, the probability of that the entire path

does not fail is given by
∏

ℓ

i=1 pei
. Design an O(m logn) time algorithm, which given two

distinct vertices s 6= t ∈V , outputs the s − t path with the largest probability of not failing.

(If you were deciding to route packets from s to t , you should use this path.)

For simplicity, you can assume that each pe is a power of 1
2

. For example, in the graph

below,

3

u

s t

w

1
2

1
16

1
4

1
4

The path s,u, t has a probability of not failing of 1
2
×

1
16

=
1

32
, while the path s, w, t has a

probability of not failing of 1
4
×

1
4
=

1
16

. Thus, your algorithm should output s, w, t .

Argue the correctness of your algorithm (formal proof is not required). Also briefly justify

the run time of the algorithm.

(Hint: It might be useful to transform the input and then apply a known algorithm on the

transformed input. Further, these identities might be useful: log(ab) = log a + logb and

log(a/b) = log a − logb. (These identities hold irrespective of the base in the logarithms

and hence are not explicitly stated.))

SOLUTION. Consider the following algorithm:

(a) Construct a new weighted graph G ′ = (V ′,E ′) with V ′ = V and E ′ = E but for every

e ∈ E ′ define ℓe = log(1/pe).

(b) Run Dijkstra’s algorithm on G ′ (and edges lengths ℓe as above). Return the short-

est s − t path from the run of the Dijkstra’s algorithm as the path with the smallest

probability of failing in G .

Correctness. Consider the path with edges e1, . . . ,ea . Note that the probability of failure

of this path is
a

∏

i=1

pei
=

a
∏

i=1

(

1

2

)ℓei

=

(

1

2

)

∑a
i=1

ℓei

= 2−
∑a

i=1
ℓei .

Note that the length of the path in G ′ is
∑a

i=1ℓei
. Thus, a path has the smallest probability

of failure if and only if it is a shortest path in G ′. Since Dijkstra is known to output the

shortest path (note that since pe is a power of 2, ℓe ≥ 0 for every e ∈ E), the correctness of

the algorithm above follows.

Runtime analysis. We assume that all probabilities are constant and hence ℓe for every

e ∈ E ′ can be computed in O(1) time. This implies that we can construct G ′ with the edge

length in time O(m +n), which is the runtime of Step (a). We saw in class that step (b)

takes O(m logn) time, which proves the required time bound.

4

4. (20 points) (This is an CS job interview question.) Given two arrays A and B each with

n numbers a1, . . . , an and b1, . . . ,bn respectively, the algorithm needs to output the order

a1,b1, a2,b2, . . . , an ,bn . E.g. if n = 4 and A = (1,3,5,7) and B = (2,4,6,8), then the output is

(1,2,3,4)(5,6,7,8). The output must be in the same array as the input. You can think of the

input as an array of size 2n which contains A and B and your algorithm must rearrange

these values as specified.

What makes the problem interesting that you are only allowed O(logn) amount of tempo-

rary space. By temporary space, I mean the total amount of space among all data struc-

tures and temporary variables except the arrays A and B . In particular, the output has to

be written in A and B .

Give an O(n logn)-time algorithm that uses O(logn) temporary space. To receive full

credit, you must fully specify your algorithm. Argue why your algorithm is correct and

justify the running time and temporary space usage of your algorithm.

(Note: If you present an O(n2) time algorithm with O(logn) temporary space or a O(n logn)

time and n +O(1)-temporary space algorithm then you can get at most 5 points.)

(Hint: It might be useful to think of a divide and conquer algorithm.)

SOLUTION. To make the description of the algorithm easier we first re-state the prob-

lem equivalently. We are given the input in the array A[0, . . . ,2n−1] and output should be

as follows: for 0 ≤ i ≤ n −1, A[2i] is the original A[i] and A[2i +1] is A[n + i].

Now note that if we swap the 2nd the 3rd quarter of the original array A and then break

it up into the middle, then we have two independent instance of the problem each with

2 ·n/2 = n numbers. We make sure that we perform the swap in O(n) time and use only

constant space to do this. We then recurse and the runtime analysis and space usage

follows by solving the simple recurrence relations.

Here is the statement of the algorithm (we will use A as a global array that all recursive

calls can access and we begin with the call Swap(0,2n −1)):

Swap(ℓ,r) //ℓ is left most index and r is right most index into A

m ← r −ℓ+1

If m = 2 then return.

For i = 0. . .m/4−1

tmp ← A[ℓ+m/4+ i]

A[ℓ+m/4+ i] ← A[ℓ+m/2+ i]

A[ℓ+m/2+ i] ← tmp

Swap(ℓ,ℓ+m/2−1)

Swap(ℓ+m/2,r)

Correctness. Note that when n = 1 (i.e. m = 2 above) then the array A already has per-

muted order. For the more general case, the argument follows from the discussion above

the algorithm description.

5

Resource Usage. It is easy to check that the run time T (n) and the temporary space

usage S(n) are given by the following recurrences:

• T (2) ≤ c and T (n) ≤ cn +2T (n/2).

• S(1) ≤ c and S(n) ≤ c +S(n/2).

We have seen in class (and HWs) that the above implies T (n) ≤ O(n logn) and S(n) ≤

O(logn), as desired.

5. (15 points) Recall that the Bellman-Ford algorithm for input graph G = (V ,E) with costs ce

in each edge e ∈ E builds an n ×n matrix M such that M [i ,u] for 0 ≤ i ≤ n −1 and u ∈ V

contains OPT (i , v), i.e. the cost of a shortest u − t path using at most i edges (for a given

target t ∈V). In particular, it computes

M [i ,u] = min

(

M [i −1,u], min
(u,w)∈E

(

M [i −1, w]+ c(u,w)

)

)

.

In class we discussed a way to compress the matrix above: if M [i ,u] = M [i − 1,u], then

we do not need to explicitly store M [i ,u]. In this problem, you will show that even with

this compression idea a naive implementation of the Bellman-Ford algorithm still needs

to store Ω(n2) entries. (Recall that in class we later saw that the algorithm only needs to

store two columns at a time– what this problem is saying that the idea of compression

alone will not give you any benefit over the naive algorithm.)

In particular, define an entry (i ,u) to be fresh, if M [i ,u] < M [i − 1,u]. For every large

enough n ≥ 1 show that there exists a problem instance to the shortest path problem (with

possibly negative weights but not negative cycle) on n vertices such that Ω(n2) entries in

the matrix M as computed by the Bellman-Ford algorithm are fresh.

(Note: If you present an example for any fixed n ≥ 4 such that the matrix has M has at

least n(n −1)/2 fresh entries, then you can get up to 3 points.)

SOLUTION. Consider the following graph G = ([n],E), where E has the following edges

and costs:

• (i , i +1) ∈ E for every 1 ≤ i ≤ n −1 with ce =−2.

• (i ,n − j) ∈ E for every 1 ≤ i ≤ n −2 and 0 ≤ j ≤ n − i −1 with ce = j .

The terminal vertex will be n.

Atri’s note: In the actual exam it would be better to present the graph as a figure instead of

the formal definition above. It’s harder to do figures in LaTeX and hence, I went through

the route above.

It can be checked that in the graph above, for every 1 ≤ j ≤ n −1 the shortest path from

n − j to n has cost −2 j and has length j . (Take the path n − j ,n − j +1, . . . ,n −1,n.) For

i < j , the shortest path from n − j to n of length i is to take the edge (n − j ,n − (i − 1))

and then to take the shortest path from n − i + 1 to n. Note that the cost of this path is

i −1−2(i −1) =−(i −1). In other words, for every u ∈ [n −1] we have M [i ,u] < M [i −1,u]

for every i ≤ n −u. Thus, we have Ω(n2) fresh entries, as desired.

6

